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Chapter 1  

Introduction 

1.1 Motivation 

 

Renewable energy resources recently have become used in energy production 

of electrical energy. One of these resources is represented by the energy produced 

in hydropower plants. The possibility to store it and the fact that it has a relative 

simple production makes the hydro energy to become a preferred resource 

compared to other system of production.  

Production of energy at variable discharge coefficients makes that the 

turbines used in practice to be operated far from optimal exploit conditions. In 

particular, at part load operating conditions Francis turbine fixed-pitch runner 

shows a strong swirl at the runner outlet. As the incoming swirling flow is 

decelerating in the diffuser cone, a hydrodynamic instability arises under the form 

of a characteristic precession flow, named  the vortex rope, see Jacob [1]. 

The vortex rope creates high-pressure unsteady fluctuations on the walls of 

the draft tube. These can lead to a poor performance of the turbine including 

fatigue damage. This phenomenon is especially severe when the frequency of the 

oscillations of the vortex rope matches the resonant frequency of the turbine or 

circuit. Modeling of the hydrodynamic phenomena which lead to vortex rope 

occurrence represent a complex task which requires to consider all the 

combinations which generate the instability in the fluid system.    

Experimental investigations of the conditions leading to vortex rope 

occurrence are difficult from technological point of view, requiring complex 

measurement systems (in case of laboratory investigation) which are not suited in 
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the real systems evaluation. This makes that the mathematical modeling of the 

flow to become an important tool in the design of hydraulic system. The unsteady 

system must be dynamically analyzed which assumes solving the Navier-Stokes 

model for different sets of conditions enforced by the real characteristics of the 

flow. Due to the nonlinearity of the Navier-Stokes equations, the solution of the 

mathematical model requires a careful approach. Despite the latest progresses of 

the computational fluid dynamics (CFD) and in the computational resources 

respectively, modeling of turbulent flows remains a cumbersome task.  

The computational resources required by the software applications to 

accurately simulate the turbulent flows are huge, caused by several factors. These 

applications are mostly based on numerical methods like finite element and finite 

volume method. Beside the fact that this methods require a very fine mesh having 

a large number of nodes, methods based on finite element face difficulties also due 

to the instability of the real phenomenon which leads to misinterpretation. Finite 

element methods can lead to extremely long computational time.   

In these conditions, stability analyses of vortex motions can help to better 

understand the dynamical behavior of the flow and offer an insight of the physical 

mechanics of the observed dynamics.   

As an alternative to classical methods the present thesis proposes a new 

approach of the analysis of the swirling flows, based on a recently mathematical 

method of spectral collocation. 

The stability investigation of the swirling flows supposes few steps. The first 

step is the boundary conditions determination for the studied situation. A problem 

which was studied in this thesis is the quality of the solution depends on the 

boundary conditions imposed. 

Many surveys cited in literature consider the problem of simulating the flow 

downstream the hydropower runner, but there no exists so far investigations 
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considering the swirling flow in hydropower turbine from the point of 

hydrodynamic stability analysis. This thesis intend to cover this gap and presents 

the methodology developed for spatio/temporal stability investigation of the swirl 

flow in Francis diffuser and the results obtained.  

1.2 Literature Review 

 

Characterizations of the part load operating conditions in the Francis 

turbine have been carried out extensively by Susan-Resiga et al. in [2] and the 

technology for overcoming the draft tube surge through active control has been 

established.  

Thicke [3] reviews some optimum design rules for draft tubes, as well as 

some practical solutions for draft tube instability problems. Since most of the 

kinetic-to-potential energy conversion occurs in the draft tube cone, particular 

attention should be devoted to conical diffuser optimization. McDonald et al. [4] 

provide basic design information for diffusers with incompressible swirling inlet 

flow. They show that swirling inlet flow does not affect the performance of 

diffusers which were unseparated or only slightly separated with axial inlet flow. 

Resiga et al. [5] carried out an experimental and theoretical investigation of the 

flow at the outlet of a Francis turbine runner, in order to elucidate the causes of a 

sudden drop in the draft tube pressure recovery coefficient at a discharge near the 

best efficiency operating point. It was found that the investigated mean swirling 

flow can be accurately represented as a superposition of three distinct vortices. An 

eigenvalue analysis of the linearized equations for steady, axisymmetric and 

inviscid swirling flow revealed that the swirl reaches a critical state precisely 

(within 1.3%) at the discharge where the sudden variation in draft tube pressure 

recovery is observed. This is very useful for turbine design and optimization, where 
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a suitable runner geometry should avoid such critical swirl configuration within 

the normal operating range. 

The availability of advanced optical instrumentation, such as laser Doppler 

velocimetry (LDV) or particle image velocimetry (PIV) systems, gives the 

opportunity to perform flow surveys in turbomachinery and in particular to 

investigate the unsteady characteristics of the complex flow velocity fields in the 

case of, for instance, the rotor-stator interactions, the draft tube, or the spiral 

casing. 

The progress of the numerical techniques in the prediction of the turbine 

characteristics for the operating ranges in the vicinity of the beam efficiency point 

(BEP) insure a good accuracy, see Vu et al. [6]. The massively parallel 

computations development permits now the numerical simulation of the whole 

turbine, see Ruprecht et al. [7], or to detail the flow in a specific part of the 

turbine. 

One of the new challenges for the numerical turbine simulation is to predict 

the partial or full flow rate operating regimes and the first simulations are 

promising. Ruprecht et al. [8] are focused on the influence of different turbulence 

models on the modeling of the draft tube vortex, carried out in a straight cone. 

Based on the length of the predicted vortex structure, certain turbulence models 

tend to have a damping effect and from this point of view, the most accurate, is 

found to be a two-scale model, reduced to a two equations set by a Very Large 

Eddy Simulation (VLES) approach. an overview of unsteady simulations in 

hydraulic machineries is presented in [9]. Problems with self-excited unsteadiness, 

vortex rope in the draft tube, applications with externally forced unsteadiness and 

rotor-stator interactions are solved using a finite element code. The pressure is 

calculated by a pressure correction algorithm. The time discretisation is obtained 

by a fully implicit 3-level scheme of 2nd order and the spatial discretisation is 
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done by using bi-linear 8-node brick elements. For the solution of the linear 

equation systems a conjugated gradient method is used for non-symmetrical 

matrices. 

Scherer et al. [10] reported the turbine design improvement for the draft 

tube operating at partial flow rate conditions by Computational Fluid Dynamics 

(CFD). An unsteady one-phase Reynold’s Averaged Navier-Stokes (RANS) 

simulation of the draft tube vortex in a Francis turbine model is used to compare 

two draft tube configurations. By comparing the calculated performances of two 

model machines over the operating range, the second one is found to have better 

draft tube efficiency at low flow rate operation, justified by the obtained pressure 

pulsations improvement, the diminishing of the strong velocity gradients, and 

backflow zone in the cone. The comparison with wall pressure experimental data 

shows a good agreement for the vortex frequency and a systematic 

underestimation of the pressure fluctuation amplitudes. 

Miyagawa et al. [11] performed an unsteady simulation of the draft tube 

vortex for a Francis pump turbine, consecutively for two different runners. The 

purpose was to analyze the influence of the velocity profile at the runner outlet on 

the flow instability in the draft tube. Two runner designs are tested for the same 

draft tube geometry using a mesh of 620.000 nodes. The same vortex behavior 

changes are observed in CFD and experimentally by qualitative comparisons with 

the rope visualizations. The authors tested a one phase and a two-phase model as 

well, and found that it influences mainly the fluctuation amplitude and has no 

influence on the vortex frequency, but no further details are given.  

A numerical study of the real flow through a Francis turbine having a 

specific speed was carried out by Magnoli [12], to predict the pressure pulsations 

induced by the interaction between rotor and stator. The numerical model 

reproduce as accurately as possible the model behaviour at the test rig. Numerous 
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numerical schemes and parameters were tested and verified with the available 

experimental results. 

Recently, the influence of turbine location on the flow system stability has 

been studied by Alligne et al. [13]. The hydro-acoustic models of hydraulic 

components have been made based on electrical equivalent schemes. An 

eigenanalysis tool, based on eigenvalues and eigenvectors computation of the 

nonlinear set of differential equations modeling the hydrodynamic system has been 

developed. An example of experimental investigation is carried out in paper [14] 

focusing on vortex rope breakdown on a high specific speed Francis turbine scale 

model. Observations of the cavitation vortex carried out with high speed camera 

have been recorded and synchronized with pressure fluctuations measurements at 

the draft tube cone. 

1.3 Thesis Objectives 

 

The main objectives of this thesis are the modeling of the swirling flows 

hydrodynamic instability assessing both analytically mathematical methods and 

development of numerical algorithms to investigate the spatial/temporal stability 

of the swirling flows systems. These instruments may offer information concerning 

the parameters that produce the hydrodynamic instability, which may lead to the 

optimization of flow control problems. 

Sophisticated mathematical calculations are needed to analytically modeling 

the swirling flows and we have no information concerning the software application 

for hydrodynamic stability investigation of the vortex structures.  

The numerical stability algorithms developed and presented in this thesis 

allow the sensing of the hydrodynamic instability states for characteristic 

parameters sets, in the process of understanding of the real fluid flow dynamic. 
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Selection of the spectral methods as a tool for solving the eigenvalue 

problems governing the flow hydrodynamic stability is motivated by the accuracy 

of these methods and the exponentially decreasing of the error, differently form the 

finite element methods having an algebraic convergence rate. 

A major benefit of collocation based method is given by a fast processing 

time and small hardware requirements. 

The spectral algorithms presented in this thesis have been validated with 

existing stability investigations concerning the swirling flow system with known 

velocity profiles, namely the Batchelor vortex problem and applied for the 

investigation of practical problems based on experimental test measured 

parameters of fluid flow in Francis turbine draft tube. 

The originality of the spectral algorithms developed in this thesis consists 

in: 

Rebuilt of the mathematical model governing the swirling flow with 

differential operators; 

Development of a special orthogonal test functions defined directly on the 

physical space of the practical problem, increasing the solution accuracy; 

Recasting of the unknown eigenvectors in series of orthogonal expansions by 

means of boundary adapted test functions, satisfying the boundary conditions, this 

technique allowing to eliminate the axis singularities; 

Approximation of derivatives of the unknown eigenvectors by means of 

spectral differentiation matrices, particularly derived in different flow problems;  

Determination of an optimal clustered grid; 

Optimal implementation of the Dirichlet, Newman and mixed boundary 

conditions; 

Inclusion of some efficient numerical libraries with eigensolvers in the 

software platform. 
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The environment for algorithms development and test was Matlab, due to 

the very advanced mathematical embedded functions, allowing the user to focus 

on developing algorithms instead of the details of the implementation. 

Is not possible to consider advanced computational algorithms without 

including the parallel and distributed processing. In this thesis, the numerical 

algorithms developed were further improved by means of parallel and distributed 

processing on a cluster structure. 

1.4 Dissertation Outline 
 

This thesis is outlined as follows:  

Chapter 1 gives a motivation for the study of hydrodynamic stability of the 

swirling flow in Francis hydropower turbine using computer aided techniques of 

parallel and distributed computation.  

Chapter 2 gives an overview of the linear stability analysis of vortex 

hydrodynamics  

The mathematical model of the swirling flow downstream the Francis 

turbine runner is developed in Chapter 3. 

Chapter 4 presents theoretical considerations about the spectral methods 

used in forthcoming numerical stability algorithms. Computational approaches for 

stability eigenvalue problems are presented here and a new orthogonal base of 

polynomial test functions is introduced.  

A boundary adapted radial spectral approximation for non-axisymmetric 

stability investigation is presented in Chapter 5. 

A modified 2L -projection method based on shifted polynomials for 

axisymmetric and bending modes stability investigation is presented in Chapter 6. 
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A parallel computation method based on spectral descriptor technique for 

analysis of swirling flows hydrodynamic stability with sophisticated boundary 

conditions is presented in Chapter 7. 

In Chapter 8 validation of the numerical procedures on a Batchelor vortex 

problem is assesed. 

Chapter 9 presents the results of parallel and distributed investigation of 

the vortex rope model using Matlab Distributed Computing Server on a Windows 

operating system cluster. 

This thesis ends in Chapter 10 where conclusions and future work are 

outlined. 
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Chapter 2  

Mathematical Issues on Stability of 

Swirling Hydrodynamic Systems 

 

2.1 Linearized Disturbance Equations 
 

The role of the hydrodynamic stability theory in fluid mechanics reach a 

special attention, especially when reaserchers deal with problem of minimum 

consumption of energy. This theory deserves special mention in many engineering 

fields, such as the aerodynamics of profiles in supersonic regime, the construction 

of automation elements by fluid jets and the technique of emulsions.   

The field of hydrodynamic stability has a long history, going back to 

Reynolds and Lord Rayleigh in the late 19th century. Since then, its central role in 

many research efforts involving fluid flow resulted in a huge number of studies. 

The main interest in recent decades is to use the theory of hydrodynamic stability 

in predicting transitions between laminar and turbulent configurations for a given 

flow field. R.E. Langer [15] proposed a theoretical model for transition based on 

supercritical branching of the solutions of the Navier-Stokes equations. This model 

was substantiated mathematically by E. Hopf [16] for systems of nonlinear 

equations close to Navier-Stokes equations. C.C. Lin, a famous specialist in 

hydrodynamic stability theory, published his first paper on stability of fluid 

systems in which the mathematical formulation of the problems was essentially 

diferent from the conservative treatment [17]. The intermittent character of the 

transition of motions in pipes was identified for the first time by J.C. Rotta [18]. 



 17 

J.T. Stuart in [19] developed an energetic method frequently used in the 

investigation of transition, method that was undertaken by D.D. Joseph whose 

intensive activity has lead to the theory of the global stability of fluid flows [20]. 

The Nobel laureate Chandrasekhar [21] presents in his study considerations of 

typical problems in hydrodynamic and hydromagnetic stability as a branch of 

experimental physics. Among the subjects treated are thermal instability of a layer 

of fluid heated from below, the Benard problem, stability of Couette flow, and the 

Kelvin-Helmholtz instability.  

 The access to computers at an institutional and personal level has defined a 

new era in teaching and learning. The opportunity to extend the subject of 

hydrodynamic stability from the matter of traditional science and engineering 

disciplines into the realm of scientific computing has become not only desirable, 

but also necessary. The new environment has motivated the writing of texts and 

monographs with a modern perspective that incorporates numerical and computer 

programming aspects. In a beautiful monograph [22], C. Pozrikidis offer an 

introductory course in fluid mechanics, covering the traditional topics in a way 

that unifies theory, computation, computer programming and numerical 

simulation. Canuto et al. [23] introduce the main strategies for constructing 

numerical spectral approximations in complex domains, in particular, the spectral 

element method, the mortar element method, the spectral discontinuous Galerkin 

method, as well as the more traditional patching collocation method. Recently, 

new techniques to numerically solve all kinds of ordinary and partial differential 

equations connected with problems in fluid dynamics, quantum mechanics, 

vibrations, linear and nonlinear waves and other fields were developed. The aim of 

the book of L. Trefethen [24] is to present the essentials of spectral collocation 

methods with the aids of a computer algebra system, presenting advanced 

numerical algorithms and solutions of nontrivial problems. 
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Many publications in the field of hydrodynamics are focused on vortex 

motion as one of the basic states of a flowing continuum and effects that vortex 

can produce. Such problems may be of interest in the field of aerodynamics, where 

vortices trail on the tip of each wing of the airplane and stability analyses are 

needed and to study the hydrodynamics of rotating machines where confined 

vortices are developed due to the turbine rotation. Mayer [25] and Khorrami [26] 

have mapped out the stability of Q-vortices, identifying both inviscid and viscous 

modes of instability and studies of Leibovich et al. [27], Orszag [28], Parras et al. 

[29], Payne et al. [30], Reddy et al. [31] have examined the stability of vortex cores 

with axial velocities.  

Hydrodynamic stability theory is concerned with the response of a laminar 

flow to a disturbance of small or moderate amplitude. If the flow returns to its 

original laminar state one defines the flow as stable, whereas if the disturbance 

grows and causes the laminar flow to change into a different state, one defines the 

flow as unstable. Instabilities often result in turbulent fluid motion, but thev may 

also take the flow into a different laminar, usually more complicated state. 

Stability theory deals with the mathematical analysis of the evolution of 

disturbances superposed on a laminar base flow. In many cases one assumes the 

disturbances to be small so that further simplifications can be justified. In 

particular, a linear equation governing the evolution of disturbances is desirable. 

As the disturbance velocities grow above a few percent of the base flow, nonlinear 

effects become important and the linear equations no longer accurately predict the 

disturbance evolution. Although the linear equations have a limited region ol 

validity they are important in detecting physical growth mechanisms and 

identifying dominant disturbance types. In this chapter we will derive the 

nonlinear equations, governing the development of a disturbance on a laminar base 
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flow, define various types of stability and discuss some general concepts and 

results. 

 The equations governing the general evolution of fluid flow are known as 

the Navier-Stokes equations. They describe the conservation of mass and 

momentum.  

The radial and axial coordinates and also the time scale for the system 

equation governing the flow were considered normalized by a reference dimension 

and they are nondimensionalized, i.e. 

 
* * *

, , ,c
ref ref ref

z r t
z r t U

L L L
= = =  (2.1) 

where refL  represents a characteristic length scale of the problem that will be 

defined for specific cases as the analysis proceeds, cU  represents a characteristic 

flow velocity of the problem and superscript *  denotes a dimensional quantity. 

To nondimensionalize the velocity field and pressure, we introduce the 

following scaling  

 
( )

* * * *

2
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c c c c

u u u p
u u u p

U U U U

θ
θ
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= = = =  (2.2) 

For an incompressible fluid, in terms of these normalizing variables using 

Cylindrical coordinates ( ), ,z r θ , the Navier-Stokes  equations read 
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where ( )u , ,z ru u uθ=  is the velocity vector of axial, radial and tangential  

components,  

 
2 2 2

2 2 2 2

1 1

r rr r zθ

∂ ∂ ∂ ∂
∆ = + + +

∂∂ ∂ ∂
 (2.7)  

is the Laplace operator, the function p  is the fluctuating pressure, Re  represents 

the Reynolds number and 

 u r z
u

u u
r r z

θ

θ

∂ ∂ ∂
⋅ ∇ = + +
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  (2.8) 

  The coordinates z , r , θ  and the time t  are independent variables and the 

functions ( ) ( ), , , , , ,z ru u u p z r tθ θ  are the dependent variables. Equations (2.4), (2.5) 

and (2.6) are nonlinear, making the solution of the system nontrivial. As a result, 

theoretical assumptions and simplifications are made to reduce the nonlinear 

partial differential equations to solving a problem of either linear partial 

differential equations or linear ordinary differential equations. 

To derive the equations that control the small oscillations the parallel and 

steady mean flow assumptions are made. By parallel flow we mean that the 

dependent variables for the base flow are at most function of only one independent 

variable, while steady denotes that the mean flow does not change with time. This 

derivation is done in three steps: separation of fluctuations, linearization and solve 

the system for complex functions applying the method of normal modes.  

Since we are considering the class of stationary basic states, we assume that 

the flow can be decomposed into a laminar basic state ( ){ }U ,0, , 'U W p=  and a 

fluctuating component that oscillates about the basic flow ( ){ }V , , ,z rv v vθ π= , 

with the fluctuation being of order 0 1δp pp  

 ( ) ( ), , , ( ) , , , ,z zu z r t U r v z r tθ δ θ= +  (2.9) 

 ( ) ( ), , , , , , ,r ru z r t v z r tθ δ θ=  (2.10)  
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 ( ) ( ), , , ( ) , , , ,u z r t W r v z r tθ θθ δ θ= +  (2.11)  

 ( ) ( ), , , '( ) , , , .p z r t p r z r tθ δπ θ= +  (2.12) 

Consistent with the parallel mean flow assumption is that the functional 

form for the mean part of the velocity components only involves the cross-stream 

coordinate r  and also zero mean radial velocity. 

Expressing each flow quantity in the form of (2.9)-(2.12) and substituting these 

expressions into equations (2.3)-(2.6), gives 
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The basic-state quantities ( ){ }U ,0, , 'U W p=  are always solutions of the Navier-

Stokes equations by themselves so equations (2.13)-(2.16) can be separated into 

basic-state and disturbance-state equations. The linearized disturbance equations 

are obtained after considering contributions of first order in delta.  
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Basic state equations: 
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Linearized disturbance equations: 
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The linearized Navier-Stokes equations are derived also in Alekseenko et al. 

[32] and in Drazin and Reid [33] and presented in a system equations form. 

For the stability studies concerning Francis turbine the fluid element being 

water the analysis can be simplified on the basis of hypothesis that viscosity can 

be neglected. In this case, for high Reynolds numbers the linearized Euler 

equations are used instead of Navier-Stokes.  

The Euler basic state equations are the following: 
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where 

 U
W

U
r zθ

∂ ∂
⋅ ∇ = +

∂ ∂
 (2.30) 

 

The linearized Euler disturbance equations are presented in the following: 
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∂ ∂ ∂ ∂
 (2.33) 

 
1

0r
r z

v v v v v WW W W W
v U v

t r r r z z r r
θ θ θ θ π

θ θ θ
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2.2 The Method of Normal Modes Analysis 

 

The normal mode method is synthesized by Criminale et al. in a remarkable 

treatise [34] devoted to the subject of stability of fluid motion. Robert Blevins 

used this metod in vibration analysis which is presented as an important part of 

design [35]. He provided a range of the natural frequencies and mode shapes of 

several practical important structural and fluid systems. Dynamic characteristics 

of most natural structures as fluids, heat transfer and control are the subject of 

the book of Tzou and Bergman [36], which aims to document recent progress on 
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the subject and to bring the technical applications of the normal modes analisys to 

the engineering community. The main advantage of linear stability analysis is that 

we can seek solutions in term of complex functions and reduce the system of 

partial differential equations to ordinary differential equations.  This particular 

approach of using complex quantities is called the normal mode approach and the 

solutions are called normal modes.  

The factorization with respect to the axial coordinate z  is allowed by the 

assumption on an axisymmetric parallel flow in a cylindrical pipe, so we shape the 

normal mode solution in form 

 ikze   , (2.35)  

where k  is the complex  axial wavenumber. 

The factorization in the tangential direction can be considered based on the 

angular periodicity flow assumption, so we shape the normal mode solution in 

form 

 ime θ   , (2.36) 

where m  is the tangential integer wavenumber. 

 A linear stability study implies linearized infnitesimal type perturbations so 

a factorization in time can be considered, of form 

 i te ω   , (2.37) 

where ω  represents the complex frequency.  

The disturbance components of velocity are shaped into normal mode 

solutions of the type 
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where , , ,F G H P  represent the complex normal mode forms of the amplitudes of 

the perturbations.   

Introducing the factorization form (2.38) into the linearized Euler 

disturbance equations (2.31)-(2.34) we obtain the following set of first order 

differential equations (ODE) with variable coefficients 

 ( )
( ) ( )

( ) 0r
G r H r

d G r m kF r
r r

+ + + =  ,(2.39)  
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( ) ( ) ( ) ( ) ( ) 0r
W r

m kU r F r G r d U r kP r
r

ω
 

− + + + + = 
 

 ,(2.42) 

where rd  means differentiation with respect to the radius.  

 The system of first order differential equations (2.39)-(2.42) governs the 

hydrodynamic stability of the fluid system. The unknown functions 

( ) ( ) ( ) ( ), , ,F r G r H r P r  depending on radial coordinate must be found solving the 

system and represent the disturbance amplitudes. A hydrodynamic model for a 

viscous swirling flow was derived in [37]. 

2.3 Definition of Temporal and Spatial Instability 
 

The fact that many problems involving swirling flows motion can be cast in 

the formulation of vortex dynamics has stimulated much interest. Vortex 
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dynamics is a frequent meet situation in fluid flow as modern dynamical system 

theory must include also turbulence and vortex studies.  

The fundamental properties of vorticity and a review of the classical theory 

of inviscid incompressible fluids containing finite regions of vorticity are 

emphasized in the monograph of Saffman [38].  In [39] Wu et al. present 

fundamental processes in fluid motion and a description of the vortex evolution 

following its entire life. A review of recent developments in the hydrodynamic 

stability theory of spatially developing flows pertaining to absolute/convective and 

local/global instability concepts is presented in a beautiful synthesis in Huerre and 

Monkewitz [40]. 

The use of the normal mode relationship for perturbations (2.38) 

substituted into the linearized system (2.31)-(2.34) transforms the partial 

differential equations into ordinary differential system (2.39)-(2.42), where the 

complex eigenfunctions F , G , H  and P  are unknown functions of r . The 

complex frequency r iiω ω+  and the complex wavenumber r ik ik+  introduce four 

additional unknows, resulting in more unknows than equations. Hence, in order to 

obtain the solutions, we must make assumptions concerning these unknows. 

When the complex frequency r iiω ω ω= + ⋅ , Re( )rω ω= , Im( )iω ω=  is 

determined as a function of the real wavenumber k  a temporal or absolute 

stability analysis is performed. The disturbance is applied in space by the fixed 

wavenumber k  and is observed as it evolves in time through the complex 

frequency ω  calculated as the eigenvalue. The eigenvalue problem governing the 

flow stability is expressed as 

 ( ), ,f k m Rω = ,  (2.43) 

where f  is a complex map. Equation (2.43) yields a ,r iω ω  pair when , ,k m  and 

R (denoting some other parameters of the system) are specified.  
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In this case, the local normal mode is still given by (2.38), and when we 

decompose the amplitude r iF F iF= +   and temporal frequency r iiω ω ω= + , one 

sees how the real and imaginary part of F  and ω  contributes to the wave solution 

( ) ( ) ( ) ( ){ }cos sin cos cos sin sinit
r r i r i r r re F t F t F t F tω ω ω ω ω+ Θ − − Θ      

 .kz mθΘ ≡ +  (2.44) 

The temporal growth rate is given by iω  for obvious reasons. Thus disturbances 

can be grouped into three classes depending on the sign of iω , namely, 

 0iω > : amplified disturbances; absolute unstable flow  (2.45) 

 0iω = : no change in time; neutral  (2.46) 

 0iω < : damped disturbances; stable flow  (2.47) 

Conversely, solving the ODE system (2.39)-(2.42) for the complex 

wavenumber r ik k i k= + ⋅ , rk = Re( )k , Im( )ik k= , when ω  is given real leads to 

the spatial branches ( , )k ω Ψ  where by Ψ  we denoted the set of all other physical 

parameters involved. The disturbance is applied in time, with real frequency ω  

and the evolution of the perturbation is observed in space.  

The eigenvalue problem of system (2.39)-(2.42) is espressed as 

 ( ), ,k f m Rω= ,  (2.48) 

where f  is a complex map. Equation (2.48) yields a ,r ik k  pair when , ,mω  and R 

(denoting some other parameters of the system) are specified.  

The spatial growth rate of the wave solution in spatial case depends on the 

imaginary part of the axial wavenumber k, as described in the next formula 

( ) ( ) ( ) ( ){ }cos sin sin cos ,ik z
r r i r r r i re F k z F k z i F k z F k z− + Θ − + Θ + + Θ + + Θ    

 .m tθ ωΘ ≡ −  (2.49) 

Thus disturbances can be grouped into three classes depending on the sign of ik , 

namely, 
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 0ik < : amplified disturbances; convective unstable flow  (2.50) 

 0ik = : no change in time; neutral  (2.51) 

 0ik > : damped disturbances; stable flow  (2.52) 

 

2.4 Studies Upon Stability of Swirling Flows Cited in 

Literature 

 

Flows with swirling motions are subject of major changes in their dynamics, 

involving very large disturbances when a characteristic ratio of tangential to axial 

velocity components is varied. The results of the theoretical analysis of the 

stability of swirling fluid systems are widely present in literature. 

The linear versus nonlinear convective/absolute instability properties of a 

Batchelor vortex are investigated by Delbende et al. in [41] using the method of 

direct numerical simulation of the linear impulse response. The results of this 

numerical procedure were in good qualitative and quantitative agreement with 

those obtained by direct application of the Briggs-Bers criterion to the inviscid 

dispersion relation used in Olendraru et al. [42]. The absolute/convective 

instability characteristics of several families of swirling jets and wakes, examined 

by analytical and numerical means, referred to the Batchelor vortex as continuous 

basic flow iwhich s known to provide an approximation of the velocity field within 

trailing line vortices. 

 The main objective of the study of Olendraru et al. [43] was to examine the 

spatio-temporal instability properties of the Batchelor q-vortex, as a function of 

swirl ratio and external axial flow parameter. For a set of a given values of the 

vortex parameters, the spatial branches were numerically determined as a function 

of the complex frequency by making use of a shooting algorithm. The results of 

the investigation presented in this paper may also be compared with the inviscid 
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instability analysis of the Rankine vortex with axial flow performed by Loiseleux 

et al. [44]. In [44] a study of the absolute/convective instability transition curves 

pertaining to all helical modes has been conducted for both jets and wakes and for 

both centrifugally destabilizing and stabilizing swirl distributions. The paper 

focuses on systematically determine the absolute/convective instability boundary 

of the basic flow by locating the absolute/convective transition curves of all 

positive and negative helical modes. The results very significantly extend those 

obtained by Lim and Redekopp [45]. The absolute/convective instability 

characteristics of two idealized models of centrifugally destabilizing swirling flows 

have been analyzed in [45]. A modified Rankine vortex model with superimposed 

axial flow is allowed to exhibit a centrifugally destabilizing azimuthal velocity 

discontinuity. The increasing magnitude of the discontinuity is then shown to very 

significantly enhance the absolute growth rate of the axisymmetric mode. 

 The stability of weakly compressible three-dimensional jets and their 

transition to turbulence was studied by Rudman et al. [46]. Here the naturally 

growing of the most unstable mode was obtained by adding a small white noise 

(random) perturbation to each component of the base jet velocity profile. The 

numerical method used here for temporal simulations is based on the piecewise 

parabolic method [47] combined with time-splitting of an additional diffusive term.  

The linear stability theory and the finite difference technique were utilized 

by Guohui et al. [48] to study the dynamics of a swirling jet. The temporal 

instability and nonlinear evolution of the swirling jet near a nozzle exit were 

studied by both normal-mode method and three dimensional direct numerical 

simulation method. The early stage numerical simulations showed that the results 

were well consistent with the prediction of the linear stability theory.  

 A key point in stability analysis is solving the eigenvalue problem that 

governs the hydrodynamic stability of the flow and practical difficulties can arise. 
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The shooting technique requires a good initial guess of the eigenvalue and only a 

single eigenvalue is tracked. Another possibility is to make use of the compound 

matrix method as discussed by Anturkar et al. [49], Ng and Reid [50, 51], 

Yiantsios and Higgins [52], for solving difficult eigenvalue problems.  Although this 

method is in general superior to shooting techniques [43, 44], nither this method 

does not provide the overall picture of the eigenvalue spectrum.  

Building upon the paper by Mehdi R. Khorrami [53] and Su and Khomami 

[54], Boomkamp et al. [55] solve the eigenvalue problem by means of a Chebyshev 

collocation technique, which takes away the difficulties mentioned before. The 

spectral method has the convenient property that it converges exponentially unlike 

other types of approximations and become widely used in computational 

hydrodynamic stability problems. 

 A synthesys of the methods used for flow stability investigations in some 

cited references is presented in Table 2.1.  

 

Table 2.1 A synthesys of the methods used in literature for flow stability 

investigations. 
 

Reference Method of investigation 

Delbende, Chomaz and Huerre [41] direct numerical simulation of the 

linear impulse response 

Olendraru, Sellier, Rossi and 

Huerre [42, 43] 

shooting numerical algorithm 

implemented by making use of 

IMSL routines 

Loiseleux, Delbende, Huerre [44] analytical investigation of the 

dispersion relation 

Lim and Redekopp [45] analytical investigation of  

idealized flow models 

Rudman, Gathmann, Lesieur [46] piecewise parabolic method 

 

Guohui, Dejun, Xieyuan [48] 

normal mode method and three 

dimensional direct numerical 

simulation 
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Anturkar, Papanastasiou, Wilkes 

[49], 

Ng and  Reid [50, 51], 

Yiantsios and Higgins [52] 

 

compound matrix method 

Mehdi R. Khorrami [53],  

Su and Khomami [54], 

Boomkamp, Boersma, Miesen, 

Beijnon [55] 

 

spectral collocation technique 
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Chapter 3  

Mathematical Model of Swirling 

Flow Downstream a Francis Turbine 

Runner 

 

3.1 Discrete Operator Formulation of the 

Hydrodynamic Model 
 

In practical engineering problems such as control of high-Reynolds number 

flow, stability analyses are needed to predict vortex motion and effects that 

vortices can produce. J.M. Burgers [56] in 1948 first studied the stability of a new 

three-dimensional vortices class, taking his name. A later note was made by 

Darren G. Crowdy [57], on the linear stability of Burgers vortex, giving an 

analytical perturbative solutions for disturbances for small Reynolds numbers, 

letting open the unsolved problem of the linear stability of Burgers vortex to 

axially varying disturbances. 

The investigations concerned the values of parameters for which the vortex 

become unstable may imply a large amount of measurement, thus one must resort 

to numerical techniques. 

The present section is focused on developing the mathematical model 

leading to the eigenvalue problem governing the linear stability of the inviscid 

swirling fluid flow under small perturbations, downstream the Francis runner. 

Due to the lack of spectral theory with respect to non-selfadjoint differential 

operators this type of problems are far from being solved.  
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We assume the swirling flow downstream the Francis runner as a steady 

columnar vortex whose velocity and pressure profiles are written as 

 ( ) ( )( ) ( ){ }U ,0, , 'U r W r p r= , (3.1) 

where U  represents the axial velocity component  and W  the tangential 

component of the velocity all depending only on radius.  

Introducing the factorization form (2.38) discussed earlier, into the 

linearized Euler disturbance equations (2.31)-(2.34) we obtain the mathematical 

model of the swirling flow system  

 ( )
( ) ( )

( ) 0r
G r H r

d G r m kF r
r r

+ + + = , (3.2)  
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( ) ( )
( ) ( )

( )
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W r W r H r

m kU r G r d P r
r r

ω
 

− − − + = 
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m kU r H r d W r G r m
r r r

ω
   

− + + + + + =   
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( )

( ) ( ) ( ) ( ) ( ) 0r
W r

m kU r F r G r d U r kP r
r

ω
 

− + + + + = 
 

, (3.5) 

where r
d

d
dr

≡  means differentiation with respect to the radius and the unknown 

functions , , ,F G H P  represent the disturbance amplitudes.  

The system (3.2)-(3.5) represents an eigenvalue problem with variable 

coefficients that governs the hydrodynamic stability of the fluid system.  To 

handle this eigenvalue problem in the system formulation is difficult due to the 

presence of the derivatives of the unknown functions ,r rd G d P . In this case, for a 

better manipulation in the process of deriving the numerical algorithm for stability 

analysis we write the mathematical model in descriptor notation (or operator 

formulation). 

Descriptor notation [58] is widely used in the control theory community to 

describe and analyze systems of differential-algebraic equations. In descriptor 
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formulation of the ODE system governing the stability of the flow, the differential 

spatial operator rd  is preceded by a square, possibly singular matrix  I
rd DΦ ≡ Φ , 

where ID  is the differentiation matrix operator [23, 24] and Φ  represents the 

modal collocated values of the unknown functions. 

 The eigenvalue problem governing the hydrodynamic stability of the flow 

system is written in operator formulation as follows 

 ( )h h0,
T

F G H PΞ = =  (3.6) 

where the matrix operator Ξ   is defined as 

 ( )
11 12 13 14

1
, , , 0,r m

k D
r r

Ξ = Ξ = + Ξ = Ξ =  (3.7) 

 ( )
21 22 23 24

2
0, , , ,rmW W

kU D
r r

ωΞ = Ξ = − − Ξ = − Ξ =  (3.8) 

 31 32 33 340, ' , , ,
W mW m

W kU
r r r

ωΞ = Ξ = + Ξ = − + + Ξ =  (3.9) 

 41 42 43 44, ', 0,
mW

kU U k
r

ωΞ = − + + Ξ = Ξ = Ξ = , (3.10) 

where prime ( )'  denotes derivative of the known velocity coefficients and  ( )rD  

represents the radial differentiation operator, i.e. ( )r
rd A D a= , where 

( ) ( )A

F

iG
r r

H

P

 
 
 

=  
 
  

 and a  represents the modal collocated values of the amplitudes. 

 To obtain the system (3.2)-(3.5) imply a large analytically calculations 

when we handle with the Euler equations in system formulation, during the 

procedure of normal modes analysis aforementioned. We present hereinafter a 

second way to obtain the hydrodynamic stability model of the flow, by performing 

the calculations in descriptor notations only. 

 We first put the linearized Euler disturbance equations (2.31)-(2.34) into 

operator formulation 
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 ( )0,
T

z rLs s v v vθ π= =  (3.11) 

where the elements of matrix operator L  are 

 11 12 13 14
1 1

, , , 0,z rL L L L
r r

θ= ∂ = ∂ + = ∂ =  (3.12) 

 21 22 23 24
1

, , , ,t z z
W U U U

L U L L L
r z r r

θ θ

∂ ∂ ∂
= ∂ + ∂ + ∂ + = = = ∂

∂ ∂ ∂
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 31 32 33 340, , 2 , ,t z r
W W

L L U L L
r r

θ= = ∂ + ∂ + ∂ = − = ∂  (3.14) 

41 42 43 44
1 1

, , , ,t z
W W W W W

L L L U L
z r r r r r

θ θθ

∂ ∂ ∂
= = + = ∂ + ∂ + + ∂ = ∂

∂ ∂ ∂
(3.15) 

when { }, , ,t z r θ∂  denote the partial derivative operators. 

 We substitute the partial derivatives operators as 

 , , ,t zi ik imθω∂ ≡ − ∂ ≡ ∂ ≡  (3.16) 

and the factorization form (2.38) in (3.11)  leading to matrix relation 
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1 1
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' 0

0

0 2
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0 '
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e
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which is equivalent with  
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FW

m Uk U k Gr
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r r P

W W m
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 ∂ + 
   
 − + +  
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+ − + + 
 

. (3.18) 

 One can observe that the matrix equation (3.18) is equivalent with (3.6), 

representing the hydrodynamic stability relation of the flow system. 
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3.2 Axis and Wall Boundary Conditions 
 

Numerous stability studies led to the conclusion that many kinds of swirling 

flows, either bounded or free, exhibit instability. 

Before we begin the computational analysis of the instability problem, we 

will describe below the main types of axisymmetric and non axisymmetric 

perturbations of a columnar vortex with a distinguish core of radius R , as 

presented in Alekseenko et al. [32]. The main types of disturbances affecting the 

core boundary, given by formula  

 ( )cosr R a kz mθ= + ⋅ +  (3.19) 

are shown in Figure 3.1. Amplitude is a R<< , k  is the axial wavenumber, m  is 

the integer tangential wavenumber, θ  is the tangential angle and ω  is the 

frequency. For analysis of disturbed core shape, the case when k  is real and 0t =  

is considered.  

 The case of 0m =  corresponds to the axisymmetrical mode. The wavelength 

has the value 2 /kπ  and the crosssection z const=  are concentric circles with a 

radius from ( )R a−  to ( )R a+ . 

 For 0m ≠  we obtain non-axisymmetrical modes. The modes with 1m = ±  

are usually called bending modes. The core crosssection z const=  is a circle of 

radius R , shifted by a distance a  along the radius r  at the angle /kz mθ = − . 

The mode 1m = +  takes the form of a left-handed helix and 1m = −  of a right-

handed one. 

 For 2m =  the circular shape of the core cross-section transforms into an 

ellipse. For all the cases with 2m ≥ , the vortex axis remains undisturbed, due to 

the symmetry in disturbance. If the amplitude of the disturbance is not small, we 

cannot use the simple canonic form. For the limiting case of an infinitely thin 
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vortex filament, the disturbed state can be described by one of the canonic curves,  

a helical line  r const= , kz m constθ+ = . 

 

Figure 3.1 Types of perturbations for a core of columnar vortex: 1-core 

boundary, 2-lines of fixed phase kz m constθ+ =  (from Alekseenko et al. [32]). 

 

To complete the flow equation system, appropriate boundary conditions 

must be satisfied for an accurate simulation of the flow behavior. These conditions 

are obtained from discretization issues and physical requirements. For our 

stability investigation of the fluid system, the boundary conditions must be 

specified in the axis and to the wall boundary. 

 The axial singularities in a cylindrical polar coordinates system occur due 

to the presence of terms 1/r, r-radial distance and because certain boundary 

conditions must be specified in 0r = . The axis boundary conditions that 

complete the homogenous first order differential system (3.2) to (3.5) are detailed 

in Batchelor and Gill [59].  In the following, we will make a review of the 

derivation of the boundary equations in axis origin. 
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While the axis is not a physical boundary, it is both a computational 

boundary and a singular line of the form of system equations being solved. The 

boundary condition is necessary to ensure that physically realistic solutions are 

obtained.  

In the axisymmetric case, if the radial and tangential velocities do not 

vanish at 0r = , then a vortex line must exist on the axis.  

The base flow is independent of θ  and this tidies up to  

 
0

lim 0
r

v

θ→

∂
=

∂
 and 

0
lim 0
r

π

θ→

∂
=

∂
. (3.20) 

Cylindrical coordinates may be converted into Cartesian coordinates by 

relations 
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= − +


=

  (3.21) 

where ( ), ,r ze e eθ  and ( ), ,i j k  are the local unit vectors at a point in cylindrical, 

respectively Cartesian system. Hence results 
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 (3.22) 

Representing the perturbation velocity field by ( ), ,z rv v v vθ=  we have 

( )
0 0

lim lim z rz r
r r

v
v e v e v eθθθ θ→ →

∂ ∂
= + + =

∂ ∂
 

0
lim z z r r

z rz r
r

v v ve e e
e v e v e vθ θ

θ θθ θ θ θ θ θ→

∂ ∂ ∂∂ ∂ ∂ 
= + + + + + = ∂ ∂ ∂ ∂ ∂ ∂ 

 

 
0

lim z r
z r r

r

v v v
e v e v eθ

θθθ θ θ→

∂ ∂ ∂    
= + − + +    ∂ ∂ ∂    

. (3.23) 

The derivatives of the velocity field with respect to θ  are expressed as  
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[ ] ( ), , ( ), ( ), ( ) i kz m tz rv v v
F r iG r H r e θ ωθ

θ θ θ θ
+ −∂ ∂ ∂ ∂ 

= = 
∂ ∂ ∂ ∂ 

 

 ( ) ( ), , i kz m timF mG imH e θ ω+ −= − . (3.24) 

The relation (3.23) becomes 

 ( ) ( )
0 0

lim lim 0z r
r r

v
imF e Gm H e iG imH eθ

θ→ →

∂
= + − − + + =  ∂

, (3.25) 

and the last condition is 

 
0

lim 0
r

imP
π

θ→

∂
= =

∂
. (3.26) 

In order for these equalities to hold, each component of the resultant vector 

must be zero. Summarizing, we have 

 0mG H+ = , 0G mH+ = , 0mF = , 0mP =  (3.27) 

in the center of the axis.  

 0m =  ⇒ 

( )

( )

( ) ( )

0 0

0 0

0 , 0

H

G

F P finite

=


=



; (3.28) 

 1m = ⇒ 

( ) ( )

( )

( )

0 0 0

0 0

0 0

H G

F

P

+ =


=
 =

; (3.29) 

 1m = − ⇒ 

( ) ( )

( )

( )

0 0 0

0 0

0 0

H G

F

P

− =


=
 =

; (3.30) 

1m >  ⇒ 
0

0

mG H

G mH

+ =


+ =
  ⇔  ( )21 0H m− =  ⇒ 

 ( ) ( )0 0 0H G= =  and ( ) ( )0 0 0F P= = . (3.31) 

The axisymmetric boundary conditions in the axis have the form 

 0, 0, , ,m G H F P finite= = =  (3.32) 
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Both the axial velocity and the pressure must have local extrema on the 

axis, thus the equations are 

 0, 0, 0r rm G H d F d P= = = = =  (3.33) 

rd  meaning the radial derivative operator. 

The non axisymmetric boundary conditions derived in the axis are 

 | | 1, 0m F G H P> = = = = , (3.34) 

 1, 0, 0m H G F P= ± ± = = = . (3.35) 

 A similar analysis was performed by O’Sullivan [60], but it seems to be 

slightly different in some assumptions. In particular, he arrives at the condition 

that ( )0 0G r = =  for all mode number m . This approach and the above method 

lead to boundary conditions with some differences. The discrepancies between the 

two sets of constraints arose in non axisymmetrical modes and are summarized in 

Table 3.1. O’Sullivan complete set of axis equations are 

 0, 0, 0,r rm G H d F d P= = = = =  (3.36) 

 1,2, 0, 0,rm F H P d H= = = = =  (3.37) 

 2, 0, 0r r rm F H P d F d H d P> = = = = = =  (3.38) 

 

Table 3.1 Axis boundary equations comparison 

 Common conditions Batchelor 

and Gill [59] 

conditions 

O’Sullivan [60] 

conditions 

0m =  0, 0r rG H d F d P= = = =    

1m =  0F P= =  0H G+ =  0, 0rH d H= =  

2m =  0F H P= = =  0G =  0rd H =  

2m >  0F H P= = =  0G =  0r r rd F d H d P= = =
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In our stability analyses we have employed the Batchelor and Gill’s 

relations for axis boundary. 

 Following Batchelor [59], for a large enough radius, at the outer wall all 

components of the velocity are enforced to vanish, this condition leads to 

corresponding boundary conditions for wallr r= . We get 

 , , , 0, wallF G H P r r→ =  (3.39) 

For the case of the flow downstream a Francis turbine runner, the physical 

condition that the radial amplitude of the velocity perturbation at the wall 

vanishes, i.e. ( ) 0wallG r = , is valid.   

In conclusion, four boundary conditions must be added to complete the 

hydrodynamic eigenvalue problem (3.2)-(3.5) of four first order homogeneous 

differential equations. They have been deduced in axis and at the wall baondary.   

The boundary relations, depending on mode number are listed below 

 
( ) ( ) ( )

( )

0 0 0 ,
1,

0.wall

F r G r H r
m

G r r

= = = = =
> 

= =
 (3.40) 

 
( ) ( ) ( ) ( )

( )

0 0, 0 0 0, 0 0,
1,

0.wall

F r H r G r P r
m

G r r

= = = ± = = = =
= ± 

= =
 (3.41) 

 
( ) ( ) ( )

( )

0 0, 0 0 0,
0,

0.

r

wall

d F r G r H r
m

G r r

= = = = = =
= 

= =
 (3.42) 

and they define the mechanical equilibrium of the fluid in our real flow problem of  

Francis turbine runner. 
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Chapter 4  

Computational Approaches For 

Stability Eigenvalue Problems 

 

4.1 Motivation of Using the Spectral Methods in 

Hydrodynamic Stability Problems  

 

As an alternative to the classical finite element method [61,62,63,64], vortex 

element method [65], finite volume method [66] or variational methods [67], 

spectral methods are one of the most used technique for the numerical 

investigations in hydrodynamic stability problems. The main reason for using 

spectral methods is their exponential accuracy. Large classes of eigenvalue 

problems can be solved numerically using spectral methods, where, typically, the 

various unknown fields are expanded upon sets of orthogonal polynomials or 

functions. The convergence of these methods is, in most cases, easy to assure and 

they are efficient, accurate and fast. Started with Orszag [28], who first used the 

Chebyshev spectral methods for solving hydrodynamic stability problems, many 

other researchers have demonstrated the applicability of this technology with high 

degree of accuracy: M. Khorrami, M. Malik and R. Ash [37], L. Parras and R. 

Fernandez-Feria [29], J. Hesthaven, S. Gottlieb and D. Gottlieb [70], Canuto et al. 

[23]). 

The pseudospectral collocation method is associated with a grid, that is a 

set of nodes and that is why it is sometimes referred to as a nodal method. The 

unknown coefficients in the approximation are then obtained by requiring the 

residual function to be zero exactly at a set of nodes. The set of the collocation 
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nodes is related to the set of basis functions as the nodes of the quadrature 

formulae which are used in the computation of the spectral coefficients from the 

grid values.  

Instead of representing the unknown function through its values on a finite 

number of grid points as doing in finite difference schemes, in spectral methods the 

coefficients { } 0..i i N
γ

=
 are used in a finite basis of known functions { } 0..i i N=

Φ  

 
0

N

i i
i

γ
=

ϒ = Φ∑  (4.1) 

The decomposition (4.1) is approximate in the sense that { } 0..i i N=
Φ  

represent a complete basis of finite-dimensional functional space, whereas ϒ  

usually belongs to some other infinite-dimensional space. Moreover, the coefficients 

{ } 0..i i N
γ

=
 are computed with finite accuracy. Among the major advantages of 

using spectral methods is the rapid decay of the error, often exponential Ne−  for 

well-behaved functions.  

Experiments showed that many swirling flows exhibits instabilities leading 

to the formation of a secondary vertical motion that can cause vortex breakdown. 

In fact, due to the large number of technical applications, swirling flows stability is 

a very active research field. From the mathematical point of view, the stability of 

a swirling flow against normal mode perturbations is governed by a nonlinear 

eigenvalue problem with variable coefficients. Paper [68] intend to be a 

preliminary survey on the standard spectral methods one can use for solving 

hydrodynamic eigenvalue problems. In this paper standard spectral methods 

(Galerkin, collocation, tau) are applied to solve an eigenvalue problem governing 

the linear stability of an inviscid swirling fluid flow under small perturbations.  

Spectral methods imply representing the problem solution as truncated 

series of smooth global functions. Remarks concerning the efficiency and the 
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accuracy of each method in this case are presented and evaluations of the relative 

error are given. All the obtained results are compared to existing ones and they 

prove to agree quite well. 

4.1.1  The 2L -Projection Method 

Historically, this was the first method of spectral type used for nonperiodic 

problems. 

Considering a system of partial derivative equations (PDE) in operator form 

 Lu f= , (4.2) 

where L  is the differential operator, u  is the vector of unknown functions, in the 

interval ( ),I a b= , coupled with the boundary conditions 

 ( ) ( )1 2,u a u bλ λ= = , (4.3) 

the PDE system is required to be satisfied at each point in its domain. We 

introduce a finite basis { } 0..i i N=
Φ  of orthogonal polynomials with respect to a 

weight function w  in the Hilbert space 2
wL , which satisfy deg i iΦ =  and 

( ),i j i ijw
c δΦ Φ =  ( ), 0,1,...i j =  for suitable constants 0ic > . Examples are the 

Chebyshev system { }, 0,1,...iT i = , for which ( ) ( )
1/221w x x

−
= − , the Legendre 

system { }, 0,1,...iL i = , for which ( ) 1w x = , or, more generally, any Jacobi system 

( ){ },
, 0,1,...iP i

λ µ
= , for which ( ) ( ) ( )1 1w x x xλ µ= − + , , 1λ µ > − . 

 The discrete solution is therefore represented as 

 ( ) ( )
^

0

N
N

i i
i

u x u x
=

= Φ∑  (4.4) 

where the unknowns are the expansion coefficients of Nu  along the chosen basis, 

computed as 
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( )
( )

^ ,

,

N
i
w

i
i i w

u
u

Φ
=

Φ Φ
 (4.5) 

 The boundary conditions (4.3) impose two linear combinations upon the 

coefficients of Nu , namely 

 ( ) ( )
^ ^

1 2
0 0

,
N N

i i i i
i i

u a u bλ λ
= =

Φ = Φ =∑ ∑ . (4.6) 

 The residual ( )N Nr u f Lu= −  is required to be orthogonal to all 

polynomials of degree up to 2N − , meaning that 

 ( ) ( ), , , 0 2N
j j ww

Lu f j NΦ = Φ ≤ ≤ − . (4.7) 

At the algebraic level, this method produces a linear system of the form 

 Mu f=  (4.8) 

where 
^ ^

0, ..., Nu u u
 

=  
 

  is the vector collecting the unknowns that represent Nu , 

^ ^

0 2 1 2, ..., , ,Nf f f λ λ−
 

=  
 

 is a known vector depending on the data f  and the 

valued on the boundary , and M  is the matrix corresponding to the equations 

defined by the method. 

Paper [69] reports a numerical investigation of the hydrodynamic instability 

of swirling flow with application in Francis hydraulic turbine assessing the tau 

spectral method. An 2L - projection algorithm is developed assessing both an 

analytical methodology and implementation using symbolic and numerical 

conversions. The model of the trailing vortex is used to validate the code with 

existing results in the literature and the results of the stability of the vortex rope 

were pointed out, together with the advantages of using the algorithm in flow 

control problems.   
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A Chebyshev tau spectral method for the investigation of the eigenvalue 

problem governing the linear stability of swirling flows is presented also in paper 

[70]. The accuracy of the developed algorithm imposed by the complicated 

boundary conditions corresponding to the real flow case of a fluid downstream a 

Francis turbine runner was validates on a benckmark model and the results proved 

to agree quite well. The results for the case of the hydraulic turbine runner were 

compared in this preliminary investigation with the existing ones in the case of 

steady axisymmetric swirling flow and good agreements were found.  

4.1.2 The Collocation Method 

If some of the coefficients of the equation are variable, the projection 

method is much less efficient and the collocation method is an efficient alternative. 

Consider again a system of partial derivative equations (PDE) in operator form 

Lu f= ,(4.9) 

where L  is the differential operator, u  is the vector of unknown functions, in the 

interval ( ),I a b= , coupled with the boundary conditions 

 ( ) ( )1 2,u a u bλ λ= = . (4.10) 

The collocation method is associated with a grid of clustered nodes jx  and 

weights jw  ( )0,...,j N= . The collocation nodes must cluster near the boundaries 

to diminish the negative effects of the Runge phenomenon, as described in [23]. 

Another aspect is that the convergence of the interpolation function on the 

clustered grid towards unknown solution is extremely fast. 

We recall that the nodes 0x  and Nx  coincide with the endpoints of the 

interval [ ],a b , and that the quadrature formula is exact for all polynomials of 

degree 2 1N≤ − , i. e., 
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 ( ) ( ) ( )
0

bN

j j
j a

v x w v x w x dx
=

=∑ ∫ , (4.11) 

for all v  from the space of test functions. 

 Let { } 0..N=
Φl l

 a finite basis of polynomials relative to the given set of 

nodes, not necessary being orthogonal. If we choose a basis of non-orthogonal 

polynomials we refer to it as a nodal basis (Lagrange polynomials for example).    

An example of nodal basis is given by Lagrange’s formula 

 
( )
( )

0 ,

( )

j N

j

jj

x x
x

x x

≤ ≤
≠

−
Φ =

−
∏

l

l
ll

 (4.12) 

 For numerical stability reasons, often Lagrangian polynomials are 

reformulated in barycentric form as 

 ( )
( )

11

0

1
,

N
k

k kk k

x
x x x x x x

λ λ
λ

−−

= ≠

  
Φ = =   

   − − −   
∑ ∏l

l l
l ll

 (4.13) 

In nodal approach, each function of the nodal basis is responsible for 

reproducing the value of the polynomial at one particular node in the interval. 

A different approach is obtained by taking as basis functions simple linear 

combinations of orthogonal polynomials. These are called bases of modal type, i. 

e., such that each basis function provides one particular pattern of oscillation of 

lower and higher frequency. 

Examples of simple modal bases are the following 

 ( ) ( ) ( )2 , 0..x T x T x N+Φ = − =l l l l ,  (4.14) 

 ( ) ( )
( )

( )
( )

( )

( )
( )2 4

2 1
2 , 0..

3 3
x T x T x T x N+ +

+ +
Ψ = − + =

+ +
l l l l

l l
l

l l
, (4.15) 

where ( )T xl  are the Chebyshev polynomials, or the modal basis functions 

 ( )
( ) ( ) ( ) ( )

3 1 1 12 3
, 1..

2 2 3 2 5 2 1 2 1

L L L L
x N+ + + − − −+

Θ = − = 
+ + + − 

l l l l
l

l
l

l l l l
, (4.16) 
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used by Melenk, Kirchner and Schwab that utilized a Legendre-Galerkin 

approximation in [71]. 

Boundary-adapted bases of modal type are also useful in numerical 

approximations of hydrodynamic stability problems. From their construction they 

contains two functions that are nonzero at precisely one endpoint of the interval, 

which are called vertex basis functions and 1N −  functions that vanish at both 

endpoints, which are called bubble functions or internal basis functions [23] . An 

example of boundary adapted modal basis is as follows 

 

( ) ( ) ( )( )

( ) ( ) ( )( )

( )
( ) ( )

( ) ( )

0 0 1

1 0 1

0

1

1 1
,

2 2
1 1

,
2 2

, 2
, 2

, 3

x
x x x

x
x x x

x x even
x N

x x odd

η η

η η

η η

η η


−Γ = − =


 +

Γ = + =

 − ≥

Γ = ≤ ≤ 
− ≥ 

l
l

l

l
l

l

 (4.17) 

where ( )xηl  denotes either ( )T xl  or ( )L xl . 

A comparison of the behavior of the members of the three bases mentioned 

in (4.14), (4.15) and (4.16) is given in Figure 4.1, for 4N = . 
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Figure 4.1 Various modal basis functions on the interval [ ]1,1− , for 4N = : the 

modal orthogonal basis { }Φl  given by (4.14) (left), the modal basis { }Ψl  given by 

(4.15) (center) and the modal basis { }Θl  given by (4.16) (right). 

 

The main goal of the paper [72] was to develop a methodology for analyzing 

the swirling flows with helical vortex breakdown by means of linear stability 

analysis. For the case of high Reynolds numbers the eigenvalue problem governing 

the linear stability analysis of the Batchelor vortex was investigated using a 

boundary adapted spectral collocation technique and a weighted residuals 

(Galerkin type) method based on Chebyshev polynomials. Following standard 

procedures, in both methods, a symmmetrization was performed eliminating all 

geometric singularities on the left-hand sides of the governing equations set. Both 

methods provide a fairly accurate approximation of the spectrum without any 
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scale resolution restriction. Comparison of the eigenfunctions amplitudes with the 

ones from [43] were presented proving that the obtained results agree very well 

with the existing ones. 

In [73] we develop hydrodynamic models using spectral differential 

operators to investigate the spatial stability of swirling fluid systems. Including 

viscosity as a valid parameter of the fluid, the hydrodynamic model was derived 

using a nodal Lagrangean basis and the polynomial eigenvalue problem describing 

the viscous spatial stability was reduced to a generalized eigenvalue problem using 

the companion vector method. For inviscid study the hydrodynamic model was 

obtained by means of a class of shifted orthogonal expansion functions and the 

spectral differentiation matrix was derived to approximate the discrete derivatives. 

The models were applied to a Q-vortex structure, both schemes providing good 

results. 

 

4.2 A New Orthogonal Base of Polynomial Expansion 

4.2.1 Considerations on Shifted Chebyshev Polynomials 

Chebyshev polynomials [74] are well-known family of orthogonal 

polynomials on the interval 1, 1−   of the real line. These polynomials present, 

among others, very good properties in the approximation of functions. Spectral 

methods based on Chebyshev polynomials as basis functions for solving 

numerically differential equations have been used by many authors as Benjamin 

[75], Donaldson and Sullivan [76], Gardner  et al. [77], Gheorghiu [78]. 

The Chebyshev polynomial ( )nT ξ  of the first kind is a polynomial in ξ  of 

degree n , defined by the relation 

 ( ) cosnT nξ θ= , cosξ θ=  (4.18) 
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If the range of the variable ξ  is the interval 1, 1−  , the range of the 

corresponding variable θ  can be taken as 0, π  . These ranges are traversed in 

opposite directions since 1x = −  corresponds to θ π=  and 1x =  corresponds to 

0θ = . 

We deduce that the first few Chebyshev polynomials are 

( )0 1T ξ = , ( )1T ξ ξ= , ( ) 2
2 2 1T ξ ξ= − , ( ) 3

3 4 3T ξ ξ ξ= − , ( ) 4 2
4 8 8 1T ξ ξ ξ= − + , ... 

In some cases it is an inconvenient that the first polynomial index is zero.  

This may cause difficulties to implement the code in computer algebra systems 

that not support zero as the start index. For this reason, we consider from our 

future calculations that the Chebyshev polynomials are defined as 

( )1 1T ξ = , ( )2T ξ ξ= , ( ) 2
3 2 1T ξ ξ= − , ( ) 3

4 4 3T ξ ξ ξ= − , ( ) 4 2
5 8 8 1T ξ ξ ξ= − + , ... 

We obtain the fundamental recurrence relation 

 ( ) ( ) ( )1 22 , 3,4,...n n nT T T nξ ξ ξ ξ− −= ⋅ − = , (4.19) 

which together with the initial conditions  

 ( )1 1T ξ = , ( )2T ξ ξ=  (4.20) 

recursively generates all the polynomials ( ){ }nT ξ  very efficiently. 

Since the range 0, R    is more convenient to use than the range 1, 1−   to 

discretize our hydrodynamic stability problems, we map the independent variable 

r  in 0, R    to the variable ξ  in 1, 1−   by the transformation 

 ( )
2

1 1
2

r R
r

R
ξ ξ= − ⇔ = +  (4.21) 

and this leads to a shifted Chebyshev polynomial of the first kind ( )*
nT r  of degree 

1n −  in r  on 0, R    given by 

 ( ) ( )* 2
1n n n

r
T r T T

R
ξ  = = − 

 
. (4.22) 

 Thus we have the polynomials 
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( )*
1 1T r = , ( )*

2
2

1
r

T r
R

= − , 

( )
2

*
3 2

8 8
1

r r
T r

R R
= − + , ( )

3 2
*
4 3 2

32 48 18
1

r r r
T r

R R R
= − + − ,… 

From (4.19) and (4.22), we may deduce the recurrence relation for *
nT  in 

the form 

 ( ) ( ) ( )* * *
1 2

2
2 1n n n

r
T r T r T r

R
− −

 = − ⋅ − 
 

, 3,4,...n =  (4.23) 

with  

 ( ) ( )* *
1 2

2
1, 1

r
T r T r

R
= = − . (4.24) 

 The use of a recurrence relation significantly increases the elapsed time to 

generate the shifted Chebyshev polynomials. To improve the performance of the 

numerical algorithm, we introduce in our code the equivalent polynomial relation 

 ( )

1 1
2 2~ ~ ~ ~ ~

* 1 2
1 1 , 1

2

n n

n
r

T r r r r r r
R

− −    
       = + − + − − = −               

 (4.25) 

to automatically generate the shifted Chebyshev polynomial *
nT  on 0, R   . 

 The shifted Chebyshev polynomials defined as described above meet the 

relations 

 ( ) ( ) 1* 0 1 n
nT

+= − ,    ( )* 1nT R = , (4.26) 

relations that we will frequently use in our future calculations. 

4.2.2 Orthogonality of the Shifted Chebyshev Polynomials 

A set of polynomials ( ){ }iP x  are orthogonal polynomials over the interval 

a x b< <  if each polynomial in the set satisfies the following relations 
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( ) ( ) ( )

( ) ( ) ( )

0,

0,

b

n m

a

b

n n

a

w x P x P x dx n m

w x P x P x dx n m


= ≠





≠ =


∫

∫

 (4.27) 

The interval ( ),a b  and the weighting function ( )w x  vary depending on the 

set of orthogonal polynomials. 

We deduce that the shifted Chebyshev polynomials of the first kind define 

an orthogonal set on the interval 0, R    and satisfy the following equations.  

We define the weighting function as 

 ( )
( )22 2 1

R
w r

R r
=

− −
 (4.28) 

and let 

 ( )
max

0

,

r

wf g w f g dr= ∫  (4.29) 

be the inner product in the Hilbert space ( )2 0,wL R . Then we have the next 

relations 

 

( )

( )

( )

* *

* *

* *

, 0, , , 1..

, , 1
2

, , 2..
4

n m
w

n n
w

n n
w

T T n m n m N

T T R n

T T R n N

π

π

 = ≠ =



= =



= =

 (4.30) 

 

4.2.3 Evaluation of the Shifted Chebyshev Derivatives 

After the symbolically evaluation of the derivatives of the shifted 

Chebyshev polynomials *
nT

′ , we expressed them as sum of the previous shifted 

Chebyshev polynomials, as follows 

*
1 0T ′ =  
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* *
2 1

2
T T

R
′ =  

* *
3 2

8
T T

R
′ =  

* * *
4 3 1

6
2T T T

R
′  = +

 
 

* * *
5 4 2

8
2 2T T T

R
′  = +

 
 

* * * *
6 5 3 1

10
2 2T T T T

R
′  = + +

 
 

* * * *
7 6 4 2

12
2 2 2T T T T

R
′  = + +

 
 

* * * * *
8 7 5 3 1

14
2 2 2T T T T T

R
′  = + + +

 
 

* * * * *
9 8 6 4 2

16
2 2 2 2T T T T T

R
′  = + + +

 
 

* * * * * *
10 9 7 5 3 1

18
2 2 2 2T T T T T T

R
′  = + + + +

 
. 

For the implementation procedure, we define the derivatives by the 

following formulae 

 

*
1

* *
2 1

0

2

T

T T
R

′ =

 ′ =


 (4.31) 

 
( ) 2

* *

1

2 1
2

3
r even

k r
r k

kk odd
T T

k R
= −

 
 −= ′ =  

≥  
  

∑  (4.32) 

 
( ) 2

* * *
1

1

2 1
2

4
r odd

k r
r k

kk even
T T T

k R
= −

 
 −= ′ = + 

≥  
  

∑  (4.33) 

 In the following, we develop another relation to define the shifted 

Chebyshev derivatives. 
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Theorem. If  the derivatives of the Chebyshev polynomials are generated by the 

recurrence relation 

 ( )
( ) 1 1

2

1 ( ) ( )
, 2

2 1

n n
n

n T T
T n

ξ ξ
ξ

ξ
− +− −′ = ≥

−
 (4.34) 

then the derivatives of the shifted Chebyshev polynomials on domain 0, R    fulfill 

the recurrence relation 

 ( )
( )

( )
( ) ( )* * *

1 1
1

, 2
4

n n n
nR

T r T r T r n
r R r

− +
−′  = − ≥

 −
 (4.35) 

Proof.  Using relation (4.21) results 

 ( )
( ) ( ) ( ) ( )* *

* 1 1
2

1

2 2
1 1

n n
n

J r T r J r T rn
T r

r

R

− +−−′ =
 − − 
 

, (4.36) 

where ( )
2

J r
R

=  and represents the Jacobian of the mapping. Furthermore, 

 ( )
( ) ( )* *

* 1 12 1

42 1

n n
n

T r T rn
T r

r rR

R R

− +−−′ =
 − 
 

. (4.37) 

Following calculations results 

( )
( )

( )
( ) ( )* * *max

1 1
max

1

4
n n n

nr
T r T r T r

r r r
− +

−′  = −
 −

  for 2n ≥ . 

 

4.3 Computational Domain and Grid Setup 
 

Finite element techniques reconstruct functions from a superposition of 

piecewise polynomial functions on subsets of triangulations of a domain or its 

boundary. In contrast to this, the collocation technique surveyed here will avoid 

triangulations and meshing, but the unknown functions are reconstructed  by the 

superposition of simple functions. 
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There are two possible approaches of the mathematical model at this point. 

The first one imply a transformation of the physical domain onto the standard 

interval of the definition of the Chebyshev polynomials [74] and in the second one, 

instead of using classical Chebyshev polynomials, we used shifted Chebyshev 

polynomials *
kT , directly defined on the physical interval of the problem. This 

second approach was our choice motivated by the form of the singular coefficients 

in the equations defining the eigenvalue problem.  

Following standard procedures such as those from [23], the Chebyshev 

spectral collocation method can be described as follows. An approximation based 

on Chebyshev polynomials to the unknown functions is first introduced. The set of 

collocation equations is then generated. The equation system consists of two parts. 

The first part is formed by making the associated residual equal to zero at the 

collocation points, while the second part is obtained by forcing the boundary 

conditions to be satisfied at the boundary collocation points. 

Since, in order to discretize our hydrodynamic stability problem, a much 

more convenient choice is the range 0, wallr    than the standard definition interval 

of classical Chebyshev polynomials 1, 1−  , the independent variable 1, 1ξ ∈ −   is 

maped to the variable 0, wallr r∈    by the linear transformation 

 ( ) 11 2wallr r ξ −= +  (4.38) 

The shifted Chebyshev polynomials of the first kind ( )*
nT r  of degree 1n −  on 

0, wallr   are given by 

 ( ) ( )* 12 1n n wallT r T rr−= −  (4.39) 

The shifted Chebyshev class is orthogonal in the Hilbert space ( )2 0,w wallL r , 

weighted by ( ) ( )( )
1/2

11 2 1wallw r rr
−

−= − −  and have the orthogonality properties 
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 ( )* *, 0, , , 1.. ,n m
w

T T n m n m N= ≠ =  (4.40) 

 ( )* * 2 1
, , ,

4 2..n n wall
w

if n
T T r

if n N

π
λ

λ

=
= = 

=
 (4.41) 

with respect to the inner product ( )
0

,
wallr

wu v u vw dr= ∫ . 

Consider the one dimensional domain 0 wallr r≤ ≤ , where wallr  means the 

radial distance to the wall. The domain of interest is represented by the modified 

Chebyshev-Gauss points in radial direction 

 { }
1

1
0

( 1)
1 cos

2 1

N
N wall

k k
i

r i N
r

N

π −

=
=

 + −  
= +  

−   
 (4.42) 

as illustrated in Figure 4.2. 

 

Figure 4.2  Illustration of a one-dimensional collocation grid used to compute the 

disturbance profile. 

 



 58 

The grid (4.42) is generated by the function gridcheb.m , described in Table 

4.1. 

Table 4.1 The function gridcheb.m  generates the clustered grid. 

function x = gridcheb(N) 

         x = cos(pi+pi*(0:N-1)/(N-1))'; % Chebyshev Gauss 

     

 

Examples: Chebyshev-Gauss nodes on [ ]1,1− . 

>> 

gridcheb(2) 

ans = 

    -1 

     1 

>> 

gridcheb(3) 

ans = 

   -1.0000 

   -0.0000 

    1.0000 

>> 

gridcheb(4) 

ans = 

   -1.0000 

   -0.5000 

    0.5000 

    1.0000 

>> 

gridcheb(5) 

ans = 

   -1.0000 

   -0.7071 

   -0.0000 

    0.7071 

    1.0000 

>> 

gridcheb(6) 

ans = 

   -1.0000 

   -0.8090 

   -0.3090 

    0.3090 

    0.8090 

    1.0000 

 

The mapping of the clustered grid onto the physical range 0, wallr   is done 

by the function mapcheb.m , given in Table 4.2. 

 

Table 4.2 The function mapcheb.m for mapping the clustered grid onto the 

physical domain. 

function  r = mapcheb(x,rmax) 

          r=rmax*x/2 + rmax/2 ;      
 

Examples: Chebyshev-Gauss grid mapped on domain [ ]0,3 .   

>> 

r=gridcheb(

2); 

mapcheb(r,3

) 

ans = 

     0 

     3 

>> 

r=gridcheb(

3); 

mapcheb(r,3

) 

ans = 

         0 

    1.5000 

    3.0000 

>> 

r=gridcheb(

4); 

mapcheb(r,3

) 

ans = 

         0 

    0.7500 

    2.2500 

    3.0000 

>> 

r=gridcheb(

5); 

mapcheb(r,3

) 

ans = 

         0 

    0.4393 

    1.5000 

    2.5607 

    3.0000 

>> 

r=gridcheb(

6); 

mapcheb(r,3

) 

ans = 

         0 

    0.2865 

    1.0365 

    1.9635 

    2.7135 

    3.0000 
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The shifted Chebyshev polynomials ( )*
nT r  are generated using (4.25) by the 

function polycheb.m, given in Table 4.3. 

Table 4.3 The function polycheb.m generates the values of the nth shifted 

Chebyshev polynomial in the collocation nodes, by polynomial relation. 

function Tc = polycheb(x,n,rmax) 

Tc=( (2.*x./rmax-1+sqrt( (2.*x./rmax-1).^2 -1 )).^(n-1) 

+...  

( 2.*x./rmax-1-sqrt( (2.*x./rmax-1).^2-1 ) ).^(n-1) )./2; 

    

 

Examples: The values of ( )*
nT r , 1,2,3,4,5n = , in four collocation nodes, on 

domain [ ]0,3 . 

>> 

r=gridcheb(

4); 

polycheb(r,

1,3) 

ans = 

     1 

     1 

     1 

     1 

>> 

r=gridcheb(

4); 

polycheb(r,

2,3) 

ans = 

   -1.6667 

   -1.3333 

   -0.6667 

   -0.3333 

>> 

r=gridcheb(

4); 

polycheb(r,

3,3) 

ans = 

    4.5556 

    2.5556 

   -0.1111 

   -0.7778 

>> 

r=gridcheb(

4); 

polycheb(r,

4,3) 

ans = 

  -13.5185 

   -5.4815 

    0.8148 

    0.8519 

>> 

r=gridcheb(

4); 

polycheb(r,

5,3) 

ans = 

   40.5062 

   12.0617 

   -0.9753 

    0.2099 

 

 Another way to generate the shifted Chebyshev polynomials is to use the 

recurrence function (4.23) given in Table 4, but this option increases significantly 

the computational time.  

 

Table 4.4 The function shiftrec.m generates the shifted Chebyshev polynomials 

by recurrence. 

function T = shiftrec(x,N,rmax) 

if N==1  

T=1; 

elseif N==2 

T=2.*x./rmax-1; 

else 

T=2.*(2.*x./rmax-1).*shiftcheb(x,N-1,rmax)-... 

shiftcheb(x,N 2,rmax); 

end 
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Chapter 5  

Numerical Algorithm for Non-

Axisymmetric Stability Investigation 

 

5.1 Boundary Adapted Radial Spectral 

Approximation 

5.1.1 Description of the Method 

We propose in this section a new radial spectral approximation for the 

trailing vortex case to study the stability of non-axisymmetric modes with 

tangential wavenumbers 1m > . 

To investigate the cases 1m > , when the system (3.2)-(3.5) obey Dirichlet 

boundary conditions (3.40) at axis and wall, we developed a spectral numerical 

procedure. The key issue here is the choice of the grid and the choice of the modal 

trial basis based on orthogonal expansion functions satisfying the boundary 

conditions. 

The difference between the classical method and the modified version 

proposed here is given by the selected spaces involved in the discretization process 

motivated by the need to adapt the grid points to the singularities of the 

underlying solution.  

Following Canuto et al. [23], we define the boundary-adapted functions 

{ }, 1...,k k Nφ =  of modal type, i.e. each function provides one particular pattern 

of oscillation and optimize the interpolative procedure 
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( )

( )

( ) ( ) ( )

1

* *
1 1

1 ,

,

1
, 2... 1

2(2 1)

wall

N
wall

k k k

r
r

r

r
r

r

r T r T r k N
k

φ

φ

φ − +


= −




=



 = − = −  +

 (5.1) 

with *
kT  the shifted Chebyshev polynomials on 0, wallr  , as shown in Figure 5.1. 

The choice is based on the condition that the values of the grid points are given 

by the same elementary analytic expression for all values of N  and they did not 

have to be computed numerically for every N . 

 

Figure 5.1 The basis functions ( )rφ  on the clustered grid with 7N =  nodes, on 

domain  [ ]0,3 . 

 

The general form of the eigenvalue problem governing the linear stability of 

the flow can be written 

0, (0, )

0, 0

wall

wall

M s on r

B s in and r

⋅ =


⋅ =
, 



 62 

in which s  will be defined in the following using the eigenvector components, M  

is a matrix differential operator acting in a Hilbert space defining the system of 

ordinary differential equations governing the linear stability of the fluid and B  is 

a set of linear differential operators defined on 0r =  and wallr r= , according to 

the boundary conditions (3.40). 

The strong form of the method applied here reads 

Find Nv  such that  ( ) 0N N iM v r = , ( )0,i wallr r∈ ,  1,..., 1i N= − , 

(0) 0N NB v = , ( ) 0N N wallB v r = . 

The discrete operator NM  is defined on a finite dimensional subspace of 

the considered Hilbert space and NB  can be constructed as an approximation like 

NM , according to the boundary condition. The numerical approximation Nv  of 

the unknown perturbation field v  is searched in a space of algebraic polynomials 

of degree N , such that the equation is satisfied in a certain number of collocation 

points ir  on ( )0, wallr . 

The proposed method allowed us to discard the first and last collocation 

nodes, expansion functions satisfying the boundary conditions from the 

construction of our modal boundary-adapted basis. In this way the critical 

singularities which occurred in evaluating terms like 1/r  for the numerical 

treatment of the eigenvalue problem were eliminated. Then the perturbation field  

is approximated with respect to expansion set of the type 

 ( ) ( ) ( )
1

, , , , , ,
N

k k k k k
k

F G H P f g h p rφ
=

= ∑  (5.2). 

We construct the modified Chebyshev Gauss grid ( )
1j j N

r
≤ ≤

Ξ =  on radial 

direction 0, wallr   defined by (4.42), that preserves the clustering rate of the 

collocation nodes. 
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In our case the collocation nodes clustered near the boundaries diminishing 

the negative effects of the Runge phenomenon [23, 24]. Another aspect is that the 

convergence of the interpolant on the clustered grid towards unknown function is 

extremely fast. Each of the basis functions (5.1) meet the relations 

 ( ) ( )1 1 10 1, 0N wallr r rφ φ= = = = , (5.3) 

 ( ) ( )1 0 0, 1N N N wallr r rφ φ= = = = , (5.4) 

 ( ) ( )1 0 0k k N wallr r rφ φ= = = = , (5.5) 

 ( ) 0, 1.. , 2.. 1k jr j N k Nφ ≠ = = − , (5.6) 

which implies that each functions , , ,F G H P  satisfy the boundary conditions, as 

described bellow 

 ( ) ( ) ( ) ( )1 1 2 2 10 0 0 ... 0 0N NF f f f fφ φ φ= + + = = , (5.7) 

 ( ) ( ) ( ) ( )max 1 1 2 2 ... 0wall wall N N wall NF r f r f r f r fφ φ φ= + + = = . (5.8) 

Similarly, the functions G , H  and P  satisfy the boundary conditions, 

having 

 1 1 10, 0, 0N N Ng g h h p p= = = = = = . (5.9) 

With (5.2) the mathematical model (3.2)-(3.5) derived in Chapter 3 takes 

the form 

 ( ) ( ) ( )
1 1 1

1
0

N N N

k k k k r k k
k k k

m
k f r g r d G h r

r r
φ φ φ

= = =

+ + + =∑ ∑ ∑ , (5.10) 

 ( ) ( )
1 1

2
0

N N

k k k k r
k k

mW W
kU g r h r d P

r r
ω φ φ

= =

 − − − + = 
 

∑ ∑ , (5.11) 

 

( ) ( ) ( ) ( )

( )
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1
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N N N

k k k k k k
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N

wall k k
k

m
kU h r W h r p r

r

W
W g r
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ω φ φ φ

φ
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=

 
− + + + 

 
 

 + + = 
 

∑ ∑ ∑

∑

 (5.12) 

 ( ) ( ) ( )'

1 1 1

0
N N N

k k wall k k k k
k k k

mW
kU f r U g r k p r

r
ω φ φ φ

= = =

 − + + + = 
 

∑ ∑ ∑ , (5.13) 



 64 

where rd  means the radial derivative operator applied to unknown functions and 

'
wallU , '

wallW  represent the radial derivative of the axial, respectively the 

tangential velocity at wallr r= . 

5.1.2 Interpolative Derivative Matrix 

In the mathematical model derived above, terms like rd G  and rd P , 

meaning derivatives with respect to the radius of the perturbation in radial 

velocity and pressure, must be approximated using an interpolative derivative 

matrix operator [23, 73], which we will deduce in the following. 

According to (5.2), let us consider 

 ( ) ( ) ( )
1

1 1
2

( )
N

k k N N
k

F r f r f r f rφ φ φ
−

=

= + +∑ . (5.14) 

By differentiating (5.14) results 

( ) ( ) ( )
1

1 1
2

( )
N

k k N N
k

F r f r f r f rφ φ φ
−

=

′ ′ ′′ = + + =∑  

 ( ) ( )
1

* *1
1 1

2

1

2(2 1)

N
N

k k k
wall wallk

f f
f T r T r

r rk

−

− +
=

′ ′ = − + ⋅ − +
 +

∑ . (5.15) 

Now using the relation (4.35), namely 

( )
( )

( )
( ) ( )* * *

1 1
1

4
wall

n n n
wall

nr
T r T r T r

r r r
− +

−′  = −
 −

    , 2n ≥  

in (5.15) yelds 

 
1

1 22
3

1 1 16 8 1
( ) ( )

10

N

k k N
wall wall wallwall k

r
F r f f f E r f

r r rr

−

=

 
′ = − − − + ⋅ +  

 
∑ , (5.16) 

where  

( ) ( ) ( ) ( ) ( )* * *
2 2

1
( ) 2 2 2 ,

4 ( )2(2 1)
wall

k k k k
wall

r
E r k T r k T r kT r

r r rk
− +

 = ⋅ − − − +
 −+

 

 3.. 1k N= − . (5.17) 
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The interpolative derivative matrix ( )rD  has the expression 

 ( )

1
3 1 1 12

2
3 2 1 22

3 12

1 1 16 8 1
( ) ... ( )

10

1 1 16 8 1
( ) ... ( )

10

... ... ... ... ... ...

1 1 16 8 1
( ) ... ( )

10

N
wall wall wallwall

N
wall wall wallr wall

N
N N N

wall wall wallwall

r
E r E r

r r rr

r
E r E r

D r r rr

r
E r E r

r r rr

−

−

−

  −
− −  

 

 −
− −  =  

 −
− −  

 


 
 
 
 
 
 
 
 
 
  



 (5.18) 

and approximates the discrete derivatives as 

 ( ) ( )1 2 ...
T

r Nrd F D f f f=  (5.19) 

 ( ) ( )1 2 ...
T

r Nrd G D g g g=  (5.20) 

 ( ) ( )1 2 ...
T

r Nrd H D h h h=  (5.21) 

 ( ) ( )1 2 ...
T

r Nrd P D p p p=  (5.22) 

It is noticeable form expression (5.17) that ( )kE r  cannot be evaluated at 

extreme nodes 1 0r =  and N wallr r=  because of singularity. We proposed the trial 

basis which satisfy the boundary conditions, allowing us to discard the first and 

last collocation nodes.  

This was numerically implemented as part of spectral collocation method by 

discarding the first and last columns of the differentiation matrix ( )rD  and also 

the first and the last lines and perform the computation on the reduced grid 

( ){ }, 2.. 1ir i Nξ = − . 

 We denote by ( )rD  the reduced order matrix ( )rD . 
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5.1.3 Implementation of the Boundary Adapted Collocation 

Method 

In the implementation of the radial boundary approximation, we reduce the 

Chebyshev-Gauss collocation grid (4.42) by discarding the extreme nodes, aiming 

to avoid the singularities produced by computing the equations of the 

hydrodynamic model in axis  0r =  and by computing the interpolative derivative 

matrix operator in { }0, wallr r= . This is allowed by the fact that each of the basis 

functions satisfy the non axisymmetric  boundary conditions. 

A modified Chebyshev-Gauss grid ( )
2 1j j N

r
≤ ≤ −

Ξ =  on radial direction  

0, wallr   was constructed. 

Let us denote by ( )ir diag r  =  , 
1

(1/ )idiag r
r

  =  
, 2 1,

2 1

( ) i Nij
j N

φ φ ≤ ≤ −
≤ ≤ −

  =  , 

( )ij j irφ φ= , ( ( ))iU diagU r  =   , ( ( ))iW diagW r  =  , 2 1i N≤ ≤ − , i.e. 
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r

r −
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,      

2
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1/ 0 0
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0 ... 0

0 0 1/ N

r

r
r −

 
   =      
 

,      
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2 2 1 2

2 1 1 1
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... ... ...

...

N

N N N

r r

r r

φ φ

φ

φ φ
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− − −
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, 

( )

( )

2

1

0 0

0 ... 0

0 0 N

U r

U

U r −

 
 

  =   
 
 

,      

( )

( )

2

1

0 0

0 ... 0

0 0 N

W r

W

W r −

 
 

  =   
 
 

, 

( )2 1,...,
T

Nf f f −= ,   ( )2 1,...,
T

Ng g g −= ,   ( )2 1,...,
T

Nh h h −= ,   ( )2 1,...,
T

Np p p −=  . 

The eigenvalue problem governing the inviscid stability of the swirling 

system has now the computational form  

 ( )
1 1

0rD g g m h k f
r r

φ φ φ        + + + =           
, (5.23) 
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W W

m k U g h D p
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, (5.24) 

1
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W W
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(5.25) 

 0
W

m k U f U g k p
r
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. (5.26) 

The equation of dispersion in matrix formulation is 

 ( ) 0k mkM M mM M sωω+ + + = , (5.27) 

with ( )
T

s f g h p= and the matrices kM , Mω , mM  and M  having the 

following explicit forms 
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where [ ] represents matrix blocks of order ( ) ( )2 2N N− × −  having specific 

elemets and 0  means the null matrix block of the same order. 

The Matlab code that implements the interpolative derivative matrix is 

given in Table 5.1. 

 

Table 5.1 Interpolative derivative matrix implementation. 

function D = interpdervmtx(N, rmax) 

 

% N number of collocation nodes 

% rmax right domain limit 

r=gridcheb(N);  % the clustered grid on [0 rmax] 

for coloana=1:N+1 

TR(1:N,coloana)=polycheb(r,coloana,rmax);  

% the values of the shifted Chebyshev polynomials in  

    % each node is retained in matrix TR 

end 

D=zeros(N); 

D(2:N-2,2)=-(16.*r(2:N-2)./rmax^2 - 8/rmax)/sqrt(10) ;  

% the second column 

for col=3:N-1  % columns 3..N-1, lines 2..N-1  

D(2:N-1,col)=rmax.*( (col-2).*TR(2:N-1,col-2)-... 

  -(2*col-2).*TR(2:N-1,col) + col.*TR(2:N-1,col+2) )./... 

   (sqrt(4*col+2).*(4.*rmax.*r(2:N-1)-4.*r(2:N-1).*... 

   r(2:N-1)) ); 

end 

 

This algorithm allows us to obtain the eigenvalue, the eigenvector, the 

index of the most unstable mode, the maximum amplitude of the most unstable 

mode and the critical distance where the perturbation is the most amplified. The 

main advantages of the proposed method consist in reducing the computational 
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time by reducing the matrices order to ( )24 8N −  instead of ( )24N and for a 

certain spectral parameter N we obtain an exponential decreasing error. 

 

5.2 Summary and Published Papers Supporting This 

Chapter 

 

In this section we developed a numerical procedure to investigate the 

spatial stability of a swirling flow subject to infinitesimal perturbations using a 

modal boundary adapted collocation technique. Our numerical procedure directly 

provided relevant information on perturbation amplitude for stable or unstable 

induced modes, the maximum amplitude of the most unstable mode and the 

critical distance where the perturbation is the most amplified.     

The accuracy of the method is assessed underlying the necessity for the 

construction of a certain class of orthogonal expansion functions satisfying the 

boundary conditions. The key issue was the choice of the grid and the choice of 

the modal trial basis.  

For boundary conditions other than the ones of Dirichlet type, the method 

is less flexible since the basis functions satisfying the corresponding boundary 

conditions are difficult to construct. 

The scheme based on shifted Chebyshev polynomials allow the numerical 

approximation of the unknown perturbation field to be searched directly in the 

physical space.  

In the next section we will present a numerical method based on a modified 

tau technique that approximates the perturbation field in axisymmetrical mode 

0m =  and for bending modes 1m = ± , when the boundary conditions are 

sophisticated expressions that increase the implementation effort. 
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2673, 2010. 

 

Paper 6. BISTRIAN, D.A., Numerical algorithms for spatio-temporal stability 

of viscous swirling flows, Journal of Engineering, Annals of Faculty of Engineering 

Hunedoara, Tome VIII,  Fascicule 3, pp. 133-138, 2010. 
 



 71 
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Chapter 6  

Numerical Algorithm for 

Axisymmetric and Bending Modes 

Stability Investigation 
 

6.1 A Modified 
2L -Projection Method Based On 

Shifted Polynomials 

6.1.1 Description of the Method 

The 2L -projection method, also known as the Chebyshev tau method, have 

been the attention of much study and has been successfully applied to many 

hydrodynamic stability problems. This represents an efficient numerical technique 

to solve eigenvalue problems with sophisticated boundary conditions by translate 

it into a linear system of equations. D. Bourne [79] is examined the Chebyshev 

tau method using the orthogonality of Chebyshev functions to rewrite the 

differential equations as a generalized eigenvalue problem. This problem is 

addressed here, in application to the Benard convection problem, and to the Orr-

Sommerfeld equation which describes parallel flow. J.J. Dongarra, B. Straughan 

and D.W. Walker [80] examined in detail the Chebyshev tau method for a variety 

of eigenvalue problems arising in hydrodynamic stability studies, particularly 

those of Orr-Sommerfeld type. Physical problems explored in this study are those 

of Poiseuille flow, Couette flow, pressure gradient driven circular pipe flow, and 

Couette and Poiseuille problems for two viscous immiscible fluids. 

The projection method is an algorithm implying in the first step to expand 
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the residual function as a series of shifted Chebyshev polynomials. We obtain a 

set of ( )4 2N −  linear equations. The eight remaining equations are provided by 

the boundary conditions applied as side constraints. 

The sophisticated boundary conditions corresponding to the real flow case 

in a Francis tubine runner in axisymmetrical case 0m =  and for bending modes 

1m = ±  motivated the use of the Chebyshev tau method suitable for non-periodic 

problems with complicated boundary conditions.  

Following [79] the difficult eigenvalue problem (3.2)-(3.5) is transformed 

into a system of linear equations describing the hydrodynamic context.  There are 

two possible approaches of the system at this point. The first one imply a 

transformation of the physical domain onto the standard interval of the definition 

of the Chebyshev polynomials. A linear transformation of the form max ( 1)
2

r
r x= +  

can be used to map the interval max[0, ]r  on the interval [ 1,1]− . For the second 

approach, instead of using classical Chebyshev polynomials, we use shifted 

Chebyshev polynomials directly defined on the physical interval of the problem. 

This choice is motivated by the form of the nonconstant coefficient of the 

unknown functions from (3.2)-(3.5) and also by the orthogonality of the shifted 

class directly in the physical space and therefore there will be no need for a 

numerical interpolation of the jacobian.   

Let us define the perturbation amplitudes as a fnite series of Chebyshev 

polynomials  

 ( ) ( ) *

1

, , , , , ,
N

k k k k k
k

F G H P f g h p T
=

= ⋅∑  (6.1) 

where *
kT  are shifted Chebyshev polynomials on the physical domain 0, wallr   . 

The basis functions { }*kT  are depicted in Figure 6.1.   
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Figure 6.1 The basis of shifted Chebyshev functions { }*kT  on domain [ ]0,3 . 

 

In order to reduce the system (3.2)-(3.5) to a finite dimensional algebraic 

system in the expansion coefficients only, we impose the condition that each 

equation of the system to be orthogonal on iT
∗ ,  0,..., 2i N= − , in the Hilbert 

space ( )2 0,w wallL r ,   with ( )
2 ( )

wall

wall

r
w r

r r r
=

−
.   

Applying the spectral operator 

 ( )
0

,
wallr

i i
w

E T ET w dr∗ ∗= ∫  (6.2) 

to the system equations and introducing the notations  

 ( )( ) ( )( )* * * *( ) , , ( ) ,d dU k l W k l
ijkld i j ijkld i j

w w
I r U T T I r W T T= =  (6.3) 

with ( )d  the derivation order, the first truncated ( )4 2N −  equations of the 

hydrodynamic stability model become 
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( )
2

100 2 1100 100
1 3 1

2 2( 1)
2

j odd j even

N N
U U U

j ij i wall i j ir
wall wallj j r j

j
k f I g r c g I g I

r r
= = = −

 
 −
 + + + +
 
  

∑ ∑ ∑  

 ( )
2

100 1100
4 1

2( 1)
2 0

j even j odd

N
U U

k ir i i wall
wallj r j

j
g I I mh r c

r
= = −

 
 −
 + + + =
 
  

∑ ∑ , (6.4) 

010 110 110 2 1
1 1 1

2
2

N N N
U W W

j ij i wall j ij j ij i
wallj j j

k g I g r c m g I h I p A
r

ω − −
= = =

− + + − −∑ ∑ ∑  

 ( )
2 2

1
3 1 4 1

2( 1) 2( 1)
2 2 0

j odd j even j even j odd

N N

j ir j ir i
wall wallj r j j r j

j j
p A p A A

r r
= = − = = −

   
   − −
   − − + =
   
      

∑ ∑ ∑ ∑ , (6.5) 

110 100 010
1 1 1

N N N
U U W

j ij j ij j ij
j j j

k h I h I m h Iω
= = =

− + +∑ ∑ ∑  

 ( )010 111
1

0
N

W W
i wall j ij ij

j

m p r c g I I
=

+ + + =∑ , (6.6) 

 010 110 011
1 1 1

0
N N N

U W U
j ij i wall i wall j ij j ij

j j j

k f I p r c f r c m f I g Iω −
= = =

 
 + − + + =
 
 
∑ ∑ ∑ , (6.7) 

for  1.. 2i N= − , where the number c being defined as 
2, 1

4, 2.. 2

i
c

i N

π

π

=
= 

= −
 and 

2NA M −∈  is square ( ) ( )2 2N N− × −  matrix, with 11 2wallA r π= , 

4 , 2.. 2mm wallA r m Nπ= = − , 0mnA = , m n≠ . The eigenvalue problem can be 

obtained as a system of 4N  equations written in matrix formulation as 

 
( )

{ } { } { } { }( )

( ) ( ) ( )

1 1 1 1

0 ,k m

TN N N N
k k k kk k k k

kM M mM M s

s f g h p

ωω

= = = =

+ + + =

=

 (6.8) 

where the elements of the matrices will be deduced from system (6.4)-(6.7) and 

the eight remaining equations are provided by the boundary conditions. 
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Since four boundary relations were necessary to completely define the 

hydrodynamic model of ordinary differential equations and they have been 

discussed in Chapter 3, by applying the modified tau method which recast the 

disturbance amplitudes by series (6.1), the additional eight relations are nedded to 

complete the algebraic system of equations that governs the flow stability. The 

remaining relations are obtained from the mathematical model (3.2)-(3.5) after 

imposing the natural no-slip condition at the wall boundary, i.e. ( ) 0wallG r = . 

The boundary relations are translated into equations that complete the 

stability model using the properties of the shifted Chebyshev polynomials derived 

in Chapter 4. 

For the axisymmetric case 0m =  the boundary conditions are 

 

0, 0, 0,

0, 0,

2
' 0,0 :

,

0,

0.

r

wall

wallwall

wall

wall

r d F G H

G kF

W H
Pm

rr r

H kU H

F kU F kP

ω

ω

= = = =
 = =

 −  + ==  
= 

 − + =


− + + = 

 (6.9) 

and imply the following equations 

 ( ) ( )1 1

1 1

1 1 0
N N

k k
k kg h+ +− = − =∑ ∑ , (6.10) 

 ( )
2 2

2
3 1 4 1

2 2( 1) 2( 1)
2 2 1 0

k evenk odd k even k odd

N N

k k
wall wall wallr k r k

k k
f f f

r r r
= − = −

   
   − −

+ − + + =   
   
      

∑ ∑ ∑ ∑ , (6.11) 

 
1 1

0
N N

k kg k f= =∑ ∑ , (6.12) 

2

2
1 3 1

2 2 2( 1)
2

k odd k even

N N
wall

k k
wall wall wall r k

W k
h p p

r r r
= −

 
 − −

+ + + 
 
  

∑ ∑ ∑  
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2

4 1

2( 1)
2 1 0,

k even k odd

N

k
wall r k

k
p

r
= −

 
 −

+ + = 
 
  

∑ ∑   (6.13) 

 ( )
1

0
N

wall kkU hω− =∑ , (6.14) 

 
1 1 1

0
N N N

wall k k kk U f p fω
 

+ − = 
 
 

∑ ∑ ∑ , (6.15) 

For the bending modes 1m = ± , the boundary conditions read 

 

0, 0, 0,

0, 0,

2
' 0,

1 :
,

1
0,

0.

wall

wall

wall
wall

wall
wall

wall wall

wall
wall

wall

r H G F P

H
G kF

r

W H
P

rm
r r

W
H H kU H P

r r

W
F F kU F kP

r

ω

ω

= ± = = =


 = ± =
 − + = = ±  

= 
 − ± + ± =


 − ± + + =
 

 (6.16) 

resulting the equation set 

 ( ) ( )1 1

1 1

1 1 0
N N

k k
k kg h+ +− ± − =∑ ∑ , (6.17) 

 ( ) ( )1 1

1 1

1 1 0
N N

k k
k kf p+ +− = − =∑ ∑ ,  (6.18) 

 
1

0
N

kg =∑ , (6.19) 

 
1 1

1
0,

N N

k k
wall

k f h
r

+ =∑ ∑  (6.20) 
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2
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2( 1)
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wall r k

k
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 −
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∑ ∑   (6.21) 

 
1 1 1

1
0

N N N
wall

wall k k k
wall wall

W
kU h h p

r r
ω

 ±
+ − ± = 
 

∑ ∑ ∑ , (6.22) 

 
1 1 1

0
N N N

wall
wall k k k

wall

W
k U f p f

r
ω

   ±
+ + − =       

∑ ∑ ∑ .  (6.23) 

 

6.1.2 Implementation of the Projection Method Using 

Symbolic and Numeric Conversions   

 The numerical algorithm was developed to work automatically for any 

number of expansion terms. The method of automatically integrating  factors that 

involve multiplication of few expressions was realized in four steps.  The main 

idea was that the Chebyshev polynomials and also the integrands to be 

symbolically generated, performing a symbolically evaluation of the integrands. 

The integrands are transformed in strings using the sym2string function, the 

symbol @(x) is concatenated to the integrands by using the strcat procedure and 

then the integrals are delivered as Matlab functions by eval procedure. The 

integrals are evaluated on the physical domain 0, wallr   using quad function.  The 

function quad numerically evaluates the integrals, using recursive adaptive 

Simpson quadrature. 

The next functions were developed to evaluate symbolically the integrands.  

The function policevs.m given in Table 6.1 generates symbolically the 

shifted Chebyshev polynomial ( )*
nT r  defined by polynomial relation 

 ( )

1 1
2 2~ ~ ~ ~ ~

* 11
1 1 , 2 1

2

p p

p wallT r r r r r r rr

− −

−

    
       = + − + − − = −               

 (6.24) 
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Table 6.1 The function policevs.m generates symbolically the thn  Chebyshev 

polynomial defined  on domain 0, wallr  . 

function Tc1 = policevs(N1,rmax1) 

 syms x N rmax 

 Tc1=((2.*x./rmax-1+sqrt((2.*x./rmax-1).^2-1)).^(N-1) +... 

   (2.*x./rmax-1-sqrt((2.*x./rmax-1).^2-1)).^(N-1))./2;  

   Tc2=subs(Tc1,N,N1);           %replace N by N1 

   Tc1=subs(Tc2,rmax,rmax1);     %replace rmax by rmax1 

 

Examples:  

>> policevs(1,3) 

ans = 1 

>> policevs(2,3) 

ans = 2/3*x-1 

>> policevs(3,3) 

ans = 1/2*(2/3*x-1+((2/3*x-1)^2-1)^(1/2))^2+1/2*(2/3*x-1-

((2/3*x-1)^2-1)^(1/2))^2 

>> policevs(4,3) 

ans = 1/2*(2/3*x-1+((2/3*x-1)^2-1)^(1/2))^3+1/2*(2/3*x-1-

((2/3*x-1)^2-1)^(1/2))^3 

>> policevs(5,3) 

ans = 1/2*(2/3*x-1+((2/3*x-1)^2-1)^(1/2))^4+1/2*(2/3*x-1-

((2/3*x-1)^2-1)^(1/2))^4 

>> policevs(6,3) 

ans = 1/2*(2/3*x-1+((2/3*x-1)^2-1)^(1/2))^5+1/2*(2/3*x-1-

((2/3*x-1)^2-1)^(1/2))^5 

>> policevs(7,3) 

ans = 1/2*(2/3*x-1+((2/3*x-1)^2-1)^(1/2))^6+1/2*(2/3*x-1-

((2/3*x-1)^2-1)^(1/2))^6 

>> policevs(8,3) 

ans = 1/2*(2/3*x-1+((2/3*x-1)^2-1)^(1/2))^7+1/2*(2/3*x-1-

((2/3*x-1)^2-1)^(1/2))^7 

>> 

 

The integrands are generated symbolically on domain 0, wallr  , using 

several functions given in Table 6.2. 
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Table 6.2 Functions to generate symbolically the integrands. 

Integrand: ( ) ( ) ( ) ( )* *
n mU r T r T r w r⋅ ⋅ ⋅  

function Tmn=produsJ(M1,N1,rmax,U0,U1,U2,R1,R2) 

 syms x 

    Tx=policevs(N1,rmax); 

    Ty=policevs(M1,rmax); 

    W=1./sqrt(1-(2.*x./rmax-1).^2); 

    U=U0+U1.*exp(-(x.^2)./(R1^2))+U2.*exp(-... 

(x.^2)./(R2^2));  

    % Vortex-rope 

    Tmn=U.*Tx.*Ty.*W; 

 

Integrand:  ( ) ( ) ( ) ( )1 * *
n mr W r T r T r w r− ⋅ ⋅ ⋅  

function Tmn=produsK(M1,N1,rmax,Ome0,Ome1,Ome2,R1,R2) 

 syms x 

    Tx=policevs(N1,rmax); 

    Ty=policevs(M1,rmax); 

    W=1./sqrt(1-(2.*x./rmax-1).^2); 

    Wsupr=(Ome0.*x+Ome1.*(R1^2).*(1-exp(-

(x.^2)./(R1^2)))./x + ... 

    Ome2.*(R2^2).*( 1- exp( -(x.^2)./(R2^2) ) )./x)./x;  

    % Vortex-rope  

    Tmn=Wsupr.*Tx.*Ty.*W; 

Integrand:  ( ) ( ) ( ) ( )* *
n mr U r T r T r w r⋅ ⋅ ⋅ ⋅  

function Tmn=produsL(M1,N1,rmax,U0,U1,U2,R1,R2) 

 syms x 

    Tx=policevs(N1,rmax); 

    Ty=policevs(M1,rmax); 

    W=1./sqrt(1-(2.*x./rmax-1).^2); 

    rU=x.*(U0+U1.*exp( -(x.^2)./(R1^2) )+... 

    U2.*exp( -(x.^2)./(R2^2) )); % Vortex-rope 

    Tmn=rU.*Tx.*Ty.*W; 

 

Integrand:  ( ) ( ) ( ) ( )* *
n mW r T r T r w r⋅ ⋅ ⋅  

function Tmn=produsM(M1,N1,rmax,Ome0,Ome1,Ome2,R1,R2) 

 syms x 

    Tx=policevs(N1,rmax); 

    Ty=policevs(M1,rmax); 

    W=1./sqrt(1-(2.*x./rmax-1).^2); 

    Ww=Ome0.*x+Ome1.*(R1^2).*(1-exp(-(x.^2)./(R1^2)))./x 

+... 

    Ome2.*(R2^2).*( 1- exp( -(x.^2)./(R2^2) ) )./x;    

    % Vortex-rope 

    Tmn=Ww.*Tx.*Ty.*W; 

 

Integrand: ( ) ( ) ( ) ( )* *' n mr W r T r T r w r⋅ ⋅ ⋅ ⋅  
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function Tmn=produsO(M1,N1,rmax,Ome0,Ome1,Ome2,R1,R2) 

 syms x 

    Tx=policevs(N1,rmax); 

    Ty=policevs(M1,rmax); 

    W=1./sqrt(1-(2.*x./rmax-1).^2); 

    rWder=x.*(Ome0+Ome1.*(R1^2).*( -1./(x.^2) +...     

        (1./(x.^2)+2/(R1^2)).*exp(-(x.^2)./(R1^2)) ) +... 

         Ome2.*(R2^2).*( -1./(x.^2) + ... 

         (1./(x.^2)+2/(R2^2)).*exp(-(x.^2)./(R2^2)) )); 

         % Vortex-rope 

    Tmn=rWder.*Tx.*Ty.*W; 

 

Integrand: ( ) ( ) ( ) ( )* *' n mU r T r T r w r⋅ ⋅ ⋅  

function Tmn=produsP(M1,N1,rmax,U1,U2,R1,R2) 

 syms x 

    Tx=policevs(N1,rmax); 

    Ty=policevs(M1,rmax); 

    W=1./sqrt(1-(2.*x./rmax-1).^2); 

    Uder=( -2.*U1.*x.*exp( -(x.^2)./(R1^2) ) )./(R1^2) 

+... 

    ( -2.*U2.*x.*exp( -(x.^2)./(R2^2) ) )./(R2^2); 

     % Vortex-rope 

    Tmn=Uder.*Tx.*Ty.*W; 

 

 

The integrals  

* *

0

wallr

ij i jI rT T w dr= ∫  * *

0

wallr

ij i jJ UT T w dr= ∫  * *

0

wallr

ij i j
W

K T T w dr
r

= ∫  

* *

0

wallr

ij i jL rUT T w dr= ∫  * *

0

wallr

ij i jM WT T w dr= ∫  * *

0

'
wallr

ij i jO rW T T w dr= ∫  

 
* *

0

'
wallr

ij i jP U T T w dr= ∫  
 

 

are numerically evaluated by means of function integrala.m, given in Table 6.3. 

Table 6.3 Function integrala.m. 

function valoareint = integrala(functie,lim1,lim2) 

    tt=sym2str(functie); 

    f=strcat('@(x)', tt); 

    fn=eval(f); 

    valoareint=quad(fn,lim1,lim2); 
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The results are retained in seven square N N×  matrices. (see Table 6.4). 

Table 6.4 Sequence for construction of the evaluation matrices. 

I=zeros(N); J=zeros(N); K=zeros(N); L=zeros(N);  

M=zeros(N); O=zeros(N); P=zeros(N); 

for i=1:N 

for j=1:N 

I(i,j)=integrala(produsI(i,j,rmax),0,rmax); 

J(i,j)=integrala(produsJ(i,j,rmax,a),0,rmax); 

K(i,j)=integrala(produsK(i,j,rmax,q),0,rmax); 

L(i,j)=integrala(produsL(i,j,rmax,a),0,rmax); 

M(i,j)=integrala(produsM(i,j,rmax,q),0,rmax); 

O(i,j)=integrala(produsO(i,j,rmax,q),0,rmax); 

P(i,j)=integrala(produsP(i,j,rmax),0,rmax); 

end 

end 

 

 

The eigenvalue problem that governs the hydrodynamic stability is written 

in a matriceal form as  

 kkM s Ms= , (6.25) 

where  

 ( )1 1 1 1,..., , ,..., , ,..., , ,...,
T

N N N Ns f f g g h h p p=  (6.26) 

and matrices kM  and M  are constructed as described below 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )
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kF kG kH kH N rows derived from eq
kLf kLg kLh kLp boundary conditions r
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  −=
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )
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2 3 .3 3 3 3

4 4 4 4 2 4 .

8

rd

th
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  −=
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kM , M  are square matrices of dimension 4N  whose elements are matrix blocks of 

dimension ( )2N N− × . 

The generalized eigenvalue problem was solved during numerical 

simulations by an Arnoldi type algorithm implemented in the sptarn MATLAB’s 

procedure.  

The application returns an acceptably accurate approximation of the 

spectrum and relevant information on perturbation amplitudes for stable or 

unstable modes, the maximum amplitude of the most unstable mode and the 

critical distance where the perturbation is the most amplified.  

6.2 Summary and Published Papers Supporting This 

Chapter 
 

In this section a polynomials based tau-numerical procedure to investigate 

the spatial stability of a swirling flow subject to infinitesimal perturbations was 

developed. Using a shifted Chebyshev approach, our numerical procedure directly 

provided relevant information on perturbation amplitude for stable or unstable 

induced modes, the maximum amplitude of the most unstable mode and the 

critical distance where the perturbation is the most amplified. 

This method is not the most precise one. However, the major advantage is 

that it allows a good handling of the complicated boundary conditions, in order to 

translate the eigenvalue problem into a linear system. 

  Another important aspect that must be pointed out is that the numerical 

approximations of the unknown perturbation fields are reached directly in the 

physical space due to a careful selection of the discretization spaces. A preliminary 

conclusion can be drawn: the non-symmetric boundary conditions have a major 

influence on the stability domain. 
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The choice of the method was assessed underlying the necessity to 

implement an eigenvalue problem with sophisticated boundary conditions, 

governing the stability of the hydrodynamic system. In the next section we will 

present a numerical method based on collocation technique that approximates the 

perturbation field for all types of boundary conditions. 

The following published papers are based on the work presented in this 

chapter. 

In Proceedings of International Conferences (ISI) 

Paper 1. BISTRIAN, D.A., SAVII, G., Non Axysimmetrical Stability Study of 

Swirling Flows Using a Projection Algorithm, Latest Trends on Computers 

(Volume I), Proceedings of the 14-th WSEAS International Conference on 

Computers, 23-25 July Corfu Island, Grecia, pp. 103-108, ISBN: 978-960-474-201-1, 

ISSN: 1792-4251, 2010. 
 

In International Journals 

 

Paper 2. BISTRIAN, D.A., Spectral Techniques For Solving PDE Stability 

Model Of Vortex Rope, WSEAS Transactions On Mathematics, Issue 9, Volume 9, 

pp. 711-722, ISSN: 1109-2769, 2010. 
 

Paper 3. BISTRIAN, D.A., SAVII, G., LATINOVIC, T., MAKSAY, ST., 

Stability Investigation Of Swirling Flows With Spectral Algorithms, IST 

Transactions Of Applied Mathematics-Modeling And Simulation, Vol. 1, No. 1 (2)  

pp. 20-27, ISSN 1913-8342, October 2010.  
 

In Proceedings of International Conferences  
 

Paper 4. DRAGOMIRESCU, I., BISTRIAN, D.A.,  MUNTEAN, S., SUSAN-

RESIGA, R., On a polynomials based tau method in a swirling flow downstream a 

Francis turbine runner, XVI International Congress on Mathematical Physics, 3-8 

August 2009, Prague, Czech Republic, Clarion Congress Hotel Prague. 
 

Paper 5. DRAGOMIRESCU, I., BISTRIAN, D.A.,  MUNTEAN, S., SUSAN-

RESIGA, R., The stability of the swirling flows with applications to hydraulic 

turbines, 3rd IAHR International Meeting of the Workgroup on Cavitation and 

Dynamic Problems in Hydraulic Machinery and Systems, October 14-16, 2009, 

Brno, Czech Republic. 
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Chapter 7  

Parallel Computation Based on 

Spectral Descriptor Technique for 

Analysis of Swirling Flows 

Hydrodynamic Stability  
 

7.1 The Analytical Investigation of the Eigenvalue 

Problem 

 

This section presents the mathematical and numerical methodology to 

investigate the stability of the fluid system downstream the Francis runner, to 

simulate the frequency, pressure pulsation amplitude and other parameters under  

operating conditions corresponding to all mode numbers.  

The numerical method considered here is a Chebyshev collocation type 

method that reduces the spatial stability problem to the study of an eigenvalue 

problem with nonconstant coefficients. Finite element techniques [61-64] 

reconstruct functions from a superposition of piecewise polynomial functions on 

subsets of triangulations of a domain or its boundary. In contrast to this, the 

collocation technique surveyed here will avoid triangulations and meshing, but the 

unknown functions are reconstructed by the superposition of simple functions. 

The presented approach is different from the traditional optimization 

methods, since the spectral collocation technique that we developed has the 

peculiar feature that can approximate the perturbation field for all types of 
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boundary conditions, especially when the boundary limits are described by 

sophisticated expressions.  

Following standard procedures [23, 81], the Chebyshev spectral collocation 

method can be described as follows. An approximation based on Chebyshev 

polynomials to the unknown functions is first introduced. The set of collocation 

equations is then generated. The equation system consists of two parts. The first 

part is formed by making the associated residual equal to zero at the collocation 

points, while the second part is obtained by forcing the boundary conditions to be 

satisfied at the boundary collocation points. 

Since, in order to discretize our hydrodynamic stability problem, a much 

more convenient choice is the range 0, wallr    than the standard definition interval 

of classical Chebyshev polynomials 1, 1−  , the independent variable 1, 1ξ ∈ −   is 

maped to the variable max0,r r∈    by the linear transformation 

 ( ) 11 2wallr r ξ −= +   (7.1) 

We consider the hydrodynamic model of the flow described by relations 

(3.2)-(3.5). 

The unknown components of the perturbation field , , ,F G H P  are written as 

truncated series of orthonormal shifted Chebyshev polynomials *
kT  

 ( ) { } { } { } { }( )*
1 1 1 1

1

, , , , , , ,
N

N N N N
k kk k k k kk k k k

k

F G H P a T a f g h p
= = = =

=

= ⋅ =∑  (7.2) 

Consider the one dimensional domain 0 wallr r≤ ≤ , where wallr  means the 

radial distance to the wall. The domain of interest is represented by 2N −  

Chebyshev-Gauss points in radial direction, excluding the axis and wall boundaries 

 { } { }
1

1
2

0

( 1)
1 cos 0,

2 1

N
N wall

k wallk
i

r i N
r r

N

π −
−

=
=

 + −  
= + −  

−   
 (7.3) 
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By applying the collocation method, the first order differential model (3.2)-

(3.5) is transformed into a system of 4 8N −  algebraic equations of form 

 ( ) ( ) ( ) ( )* * *

1 1 1

1
0

N N N

k k i k k i r i k k i
i ik k k

m
k f T r g T r d G r h T r

r r
= = =

+ + + =∑ ∑ ∑ , (7.4) 

 ( )
( )

( )
( )

( ) ( )* *

1 1

2
0

N N
i i

i k k i k k i r i
i ik k

mW r W r
kU r g T r h T r d P r

r r
ω

= =

 
− − − + = 

 
∑ ∑ , (7.5) 

 

( )( ) ( ) ( ) ( ) ( )

( )
( )

* * *

1 1 1

' *

1

0,

N N N

i k k i i k k i k k i
ik k k

N
i

wall k k i
i k

m
kU r h T r W r h T r p T r

r

W r
W g T r

r

ω
= = =

=

 
− + + + 

 
 

 
+ + = 
 

∑ ∑ ∑

∑

 (7.6) 

 ( )
( )

( ) ( ) ( )* ' * *

1 1 1

0
N N N

i
i k k i wall k k i k k i

i k k k

mW r
kU r f T r U g T r k p T r

r
ω

= = =

 
− + + + = 

 
∑ ∑ ∑ . (7.7) 

2.. 1i N= − , where rd  means the radial derivative operator applied to unknown 

functions and '
wallU , '

wallW  represent the radial derivative of the axial, 

respectively the tangential velocity at wallr r= . 

The system must be completed with eigth relations that are defined by the 

boundary equations and the additional relations obtained from the mathematical 

model after imposing the natural no-slip condition at the wall boundary, i.e. 

( ) 0wallG r = . 

The equations completing the 4N  algebraic system is then 

Axis boundary conditions 

 1 : 0,m F G H> = = =  (7.8) 

 0 : 0, 0,rm d F G H= = = =  (7.9) 

 1 : 0, 0,m H G F P= ± ± = = =  (7.10) 

Wall boundary condition 

 1 : 0,m G> =  (7.11) 

 0 : 0,m G= =  (7.12) 
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 1 : 0,m G= ± =  (7.13) 

Additional stability equations  

 

0,

2
' 0,

1
0,

0.

wall

wall

wall

wall
wall

wall wall

wall
wall

wall

H
kF m

r

W H
P

r

W
H m H P kU H

r r

W
F m F kU F kP

r

ω

ω

+ =

−
+ =

 
− + + + = 

 

− + + + =

 (7.14) 

The boundary relations are translated into algebraic equations that 

complete the stability model using the properties of the shifted Chebyshev 

polynomials derived in Chapter 4. For axysimmetric mode 0m =  and for bending 

modes 1m = ±  the boundary relations have been detailed earlier by relations (6.10)

-(6.15) and (6.17)-(6.23), respectivelly. By means of the spectral collocation as 

numerical investigation technique, we extended the stability analysis to non 

axisymmetric mode, having mode number 1m > . A boundary adapted numerical 

collocation was discussed in Chapter 5, this method being restrictive for fluids 

fullfiled Dirichlet boundary conditions only. In the case of our investigation, the 

fluid system exhibit sophisticated relations at the boundaries, even in non 

axisymmetric mode, thus the spectral collocation is suitable for numerical 

investigation of the fluid system in Francis hydropower turbine. 

The boundary relations that we embedded in the numerical stability 

algorithm, for the non axisymmetric case, are 

 ( ) ( ) ( )1 1 1

1 1 1

1 1 1 0
N N N

k k k
k k kf g h+ + +− = − = − =∑ ∑ ∑ , (7.15) 

 
1

0
N

kg =∑ , (7.16) 
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1 1

0
N N

k k
wall

m
k f h

r
+ =∑ ∑ , (7.17) 

 

2

2
1 3 1

2

4 1

2 2 2( 1)
2

2( 1)
2 1 0,

k odd k even

k even k odd

N N
wall

k k
wall wall wall r k

N

k
wall r k

W k
h p p

r r r

k
p

r

= −

= −

 
 − −

+ + + 
 
  

 
 −

+ + = 
 
  

∑ ∑ ∑

∑ ∑

  (7.18) 

 
1 1 1 1

1
0

N N N N
wall

k k k wall k
wall wall

W
h m h p kU h

r r
ω

 
− + + + = 

 
 

∑ ∑ ∑ ∑ , (7.19) 

 
1 1 1 1

0
N N N N

wall
k k wall k k

wall

W
f m f k U f p

r
ω

 
− + + + = 

 
 

∑ ∑ ∑ ∑ . (7.20) 

 

7.2 Numerical Approach Based on Collocation 

Technique 

7.2.1 Interpolative Derivative  Operator 

In the radial direction, the values of relevant derivatives with respect to r  

at the grid points are computed by the differentiation matrix operator ( )rD . We 

deduced in Chapter 4 the formula that express the derivative of the shifted 

Chebyshev polynomial *
nT  as a difference between the previous and the following 

term 

 ( )
( )

( )
( ) ( )* * *

1 1
1

, 2
4

wall
n n n

wall

nr
T r T r T r n

r r r
− +

−′  = − ≥
 −

. (7.21) 

Let us consider 

 ( ) ( ) ( )* *
1 1

2

N

k k
k

F r f T r f T r
=

= + ∑ . (7.22) 

By differentiating (7.21) results 
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 ( ) ( ) ( )* *
1 1

2

N

k k
k

F r f T r f T r
=

′ ′′ = + ∑ . (7.23) 

But ( )*
1 0T r′ =  and involving relation (7.23) results 

 ( ) ( )
( )

( )
( ) ( )* * *

1 1
2 2

1

4

N N
wall

k k k k k
wallk k
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F r f T r f T r T r

r r r
− +
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−′  ′ = = −
 −

∑ ∑ . (7.24) 

The interpolative differentiation matrix ( )rD  can be written as 

 ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2 2 3 2 1 2

2 3 3 3 1 3

2 1 3 1 1 1

...

...

... ... ... ...

...

N

Nr

N N N N

r r r

r r r
D

r r r

σ σ σ

σ σ σ

σ σ σ

−

−

− − − −

 
 
 =
 
  
 

, (7.25) 

where  

 
( )

( )
( ) ( )* *

1 1
1

( ) , 2.. 1k k k
wall

k
r T r T r k N

r r r
σ − +

−  = − = −
 −

. (7.26) 

The discrete derivatives are approximated in descriptor formulation as 

 ( ) { } { } { } { }( )1 1 1 1
2 2 2 2

, , , ,
TN N N Nr

k k kr k k k kk k k k
d a D a a f g h p

− − − −
= = = =

≡ =  (7.27) 

 

7.2.2 Parallel Implementation of the Spectral Collocation 

Algorithm 

Solving the resulting eigenvalue problem with nonconstant coefficients imply 

imposing that the eigenvalue problem (7.4)-(7.14) to be satisfied at the ( )2N −  

interior points ( ) , 2.. 1ir i N= − . The system of 4N  equations is completed with 

the boundary relations, respectively.  

It is noticeable form expression (7.26) that ( )k rσ  isn’t necessary to be 

evaluated at extreme nodes 1 0r =  and N wallr r= , thus avoiding the singularities. 

The nature of the instability of the basic flow has been widely investigated 

either analytically, numerically or experimentally. Depending on whether the 
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frequency is real and the wavenumber is complex or vice versa, the stability 

investigations are classified as temporal or spatial stability, respectively, as we 

describe in Chapter 2. In this way, a temporal stability analysis of normal modes 

imply that the ω -roots r iiω ω ω= + ⋅ , Re( )rω ω= , Im( )iω ω= , of the dispersion 

relation ( ) 0D ω =  are obtained as functions of the real values of k . In this 

conditions, a characterization of the stability of the basic flow is: the basic flow is 

unstable if, for some real k , the growth rate, ( )Imiω ω=  is positive. If the 

growth rate is negative for all real k  then the basic flow is absolutely stable. 

Conversely, solving the dispersion relation for the complex wavenumber, 

r ik k i k= + ⋅ , rk = Re( )k , Im( )ik k= , when ω  is given real leads to the spatial 

branches. The disturbance is applied in time, with real frequency ω  and the 

evolution of the perturbation is observed in space. Here the flow is considered 

convective unstable when the disturbance grows, i.e. the imaginary part of k  is 

negative.    

Depending on the type of the stability analysis, as classified above, both 

cases lead to a two-point eigenvalue problem written in the computational form as 

follows 

 

{ } { } { } { }( )

1
1 0

1 1 1 1

0,

, , ,
TN N N N

k k k kk k k k

TP S
k v

B BB

v f g h p

ω

= = = =

     
+ + =            

=

. (7.28) 

Let us denote by  

[ ] ( )ir diag r= , 
1

(1/ )idiag r
r

  =  
,[ ] ( ( ))iU diagU r= ,[ ] ( ( ))iW diagW r= , 2 1i N≤ ≤ − , 

[ ] 2 1,
1

( ) i Nij
j N

η η ≤ ≤ −
≤ ≤

= ,   *( )ij j iT rη = ,   [ ] ( )
2 1,
1

( )r
i Nij
j N

D D ≤ ≤ −
≤ ≤

= , 

I  represents the identity matrix of order ( )2N −  and 0  means the null matrix of 

the same order. 
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P ,T  and S  are matrices of order ( )4 8 4N N− ×  whose elements derive 

form the differential system (7.4)-(7.7) 

 
[ ]

[ ]

[ ]

0 0 0 0

0 0 0

0 0 0

0 0 0

P
η

η

η
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 −
 

− 

, (7.29) 
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 To implement the boundary relations we define the following line matrices 

[ ] ( ) 1

1
1 1 i

i
i N

e +

≤ ≤
 ± = = −
 

, [ ] [ ]11 1i i N
e

≤ ≤
= = , 
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2

1
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1

0, 1

2
, 2

2( 1)
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i N

if i

if i
r

i
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p p r

i
if i even

r

= −

= −

≤ ≤

= 
 
  =
 
 

  
  − 

 ≥  = =        
      − + ≥          

∑

∑

 (7.32) 

Formula (7.32) defines also the matrix [ ]f . 
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Here 0 means the line null matrix having N  elements on the line. The 

boundary matrices 1B , 1B  and 0B  of order 8 4N×  have the elements deriving 

from the boundary equations. 

For non axisymmetric case 1m >  the boundary matrices are implemented 

as described here 

[ ]

[ ]

1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

1 0 0 0

B
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  − 
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 (7.33) 

 

For axisymmetric case 0m =  the boundary matrices are implemented as 

follows  
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[ ]
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For bending modes 1m = ±  we define the boundary matrices in the 

following form 

[ ]
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[ ] [ ]

[ ]

[ ]

[ ]
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[ ] [ ]

[ ]

0

0 1 1 0

1 0 0 0

0 0 0 1

0 1 0 0
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 (7.35) 

 

 The function to implement the eigenvalue problem (7.28) in temporal 

stability analysis is listed in Table 7.1.  

 

Table 7.1 Dynamic matrices and boundary condition implementation in temporal 

analysis for mode 0m = . 
 

function dynmtx0=boundarycond(N, kapa) 

% MATRICILE DINAMICE – Problema de valori proprii temporala 

Nc=N-2; 

Z=zeros(Nc,N); 

% matricea M_k 

M_k=[diag(rc)*PHIc Z Z Z ; ... 

    Z diag(uzc)*PHIc Z Z ;... 

    Z Z diag(rc)*diag(uzc)*PHIc Z;... 

    diag(uzc)*PHIc Z Z PHIc] ; 

  

% matricea M_omega 

M_omega1=[Z Z Z Z;... 

       Z -PHIc Z Z;... 

       Z Z -diag(rc)*PHIc Z;... 

       -PHIc Z Z Z]; 

  

%matricea M_m 

M_m=[Z Z PHIc Z;... 

    Z diag(1./rc)*diag(utec)*PHIc Z Z;... 

    Z Z diag(utec)*PHIc PHIc;... 

    diag(1./rc)*diag(utec)*PHIc Z Z Z]; 

  

% matricea M_zero 

M_zero=[Z PHIc+diag(rc)*D1c Z Z;... 

    Z Z 2*diag(1./rc)*diag(utec)*PHIc -D1c;... 

    Z diag(utec)*PHIc+diag(rc)*diag(utederc)*PHIc Z Z;... 

    Z diag(uzderc)*PHIc Z Z]; 

  

MMplus=kapa*M_k+m*M_m+M_zero; 

MM1=-MMplus ; 
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%Adaog conditiile la limita cazul m=0  F'=G=H=0 la 0 si 

c5,c6,c7,c8 la  rmax 
%in matricea M_omega 

  
oLf=zeros(8,N);   % 8 conditii 
for j=1:N 
    oLf(8,j)=-1; % c8 
end 

  
oLg=zeros(8,N); %c2 

  
oLh=zeros(8,N); %c2 
for j=1:N 
    oLh(7,j)=-1; %c7 
end 

  
oLp=zeros(8,N);   

  
M_omega=zeros(4*N); 
M_omega(1:4*N-8,:)=M_omega1; 
M_omega(4*N-7:4*N,1:N)=oLf; 
M_omega(4*N-7:4*N,N+1:2*N)=oLg; 
M_omega(4*N-7:4*N,2*N+1:3*N)=oLh; 
M_omega(4*N-7:4*N,3*N+1:4*N)=oLp; 

  
%in matricea MM conditiile la limita   caz m=0 

  
Lf=zeros(8,N); %c3  
Lf(3,2)=2/rmax;%c3  
for j=3:N 
    if mod(j,2)~=0  %coloana impara incepand de la 3 
        for rrr=j-1:-2:2   %r par 
                Lf(3,j)=Lf(3,j)+2*(j-1)*(-2)/rmax; 
        end 
    end 
    if mod(j,2)==0  %coloana para incepand de la 4 
        for ttt=j-1:-2:3    %rimpar   
               Lf(3,j)=Lf(3,j)+2*(j-1)*(2)/rmax; 
        end 
        Lf(3,j)=Lf(3,j)+1*2*(j-1)/rmax; %adun T1(0)=1*coeficient 
    end 
end 
for i=1:N      

    Lf(5,i)=kapa;  %c5           
    Lf(8,i)=kapa*Urmax+m*Wrmax/rmax;  %c8    
end                    

  
 Lg=zeros(8,N); 
for i=1:N 
    Lg(1,i)=(-1)^(i+1); %c1 
    Lg(4,i)=1; %c4   
end 

  
  Lh=zeros(8,N); 
for i=1:N 
    Lh(2,i)=(-1)^(i+1); %c2 
    Lh(5,i)=m/rmax;    %c5 
    Lh(6,i)=-2*Wrmax/rmax; %c6 
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    Lh(7,i)=kapa*Urmax+m*Wrmax/rmax ;  %c7 
end 

  
  Lp=zeros(8,N); 
    for i=1:N 
    Lp(7,i)=m/rmax;  %c7  

    Lp(8,i)=kapa;  %c8 
end 
% +P'  din c6 
Lp(6,2)=2/rmax; 
for j=3:N 
    if mod(j,2)~=0  %coloana impara incepand de la 3 
        for rrrr=j-1:-2:2   %r par 
                Lp(6,j)=Lp(6,j)+2*(j-1)*(2)/rmax; 
        end 
    end 
    if mod(j,2)==0  %coloana para incepand de la 4 
        for tttt=j-1:-2:3    %rimpar   
               Lp(6,j)=Lp(6,j)+2*(j-1)*(2)/rmax; 
        end 
        Lp(6,j)=Lp(6,j)+1*2*(j-1)/rmax;%adun T1(0)=1*coeficient 
    end 
end 

  
MM=zeros(4*N); 
MM(1:4*N-8,:)=MM1; 
MM(4*N-7:4*N,1:N)=-Lf; 
MM(4*N-7:4*N,N+1:2*N)=-Lg; 
MM(4*N-7:4*N,2*N+1:3*N)=-Lh;  
MM(4*N-7:4*N,3*N+1:4*N)=-Lp; 
return 

 

The function to implement the eigenvalue problem (7.28) for spatial 

stability analysis is listed in Table 7.2. 

Table 7.2 Dynamic matrices and boundary condition implementation in spatial 

analysis for mode 0m = . 
 

function dynmtx1=boundarycond1(N, omega) 

% MATRICILE DINAMICE – Problema de valori proprii spatiala 

Nc=N-2; 

Z=zeros(Nc,N); 

  

% matricea M_k 

  

M_k1=[diag(rc)*PHIc Z Z Z ; ... 

    Z diag(uzc)*PHIc Z Z ;... 

    Z Z diag(rc)*diag(uzc)*PHIc Z;... 

    diag(uzc)*PHIc Z Z PHIc] ; 

  

% matricea M_omega 

  

M_omega=[Z Z Z Z;... 

       Z -PHIc Z Z;... 

       Z Z -diag(rc)*PHIc Z;... 

       -PHIc Z Z Z]; 
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%matricea M_m 

  

M_m=[Z Z PHIc Z;... 

    Z diag(1./rc)*diag(utec)*PHIc Z Z;... 

    Z Z diag(utec)*PHIc PHIc;... 

    diag(1./rc)*diag(utec)*PHIc Z Z Z]; 

  

% matricea M_zero 

  

M_zero=[Z PHIc+diag(rc)*D1c Z Z;... 

    Z Z 2*diag(1./rc)*diag(utec)*PHIc -D1c;... 

    Z diag(utec)*PHIc+diag(rc)*diag(utederc)*PHIc Z Z;... 

    Z diag(uzderc)*PHIc Z Z]; 

  

MMplus=omega*M_omega+m*M_m+M_zero; 

MM1=-MMplus ; 

  

%Adaog conditiile la limita cazul m=0  F'=G=H=0 la 0 si 

c5,c6,c7,c8 la  rmax 
%in matricea M_k 

  
kLf=zeros(8,N);   
for i=1:N 
    kLf(5,i)=1;  %c5 
    kLf(8,i)=Urmax;  %c8 
end 

  
kLg=zeros(8,N);  

  
kLh=zeros(8,N);  
for i=1:N 
    kLh(7,i)=Urmax;  %c7  
end 

  
kLp=zeros(8,N);  
for i=1:N 
    kLp(8,i)=1;  %c8  
end 

  
M_k=zeros(4*N); 
M_k(1:4*N-8,:)=M_k1; 
M_k(4*N-7:4*N,1:N)=kLf; 
M_k(4*N-7:4*N,N+1:2*N)=kLg; 
M_k(4*N-7:4*N,2*N+1:3*N)=kLh; 
M_k(4*N-7:4*N,3*N+1:4*N)=kLp; 

 
%in matricea MM  conditiile la limita   caz m=0 

  
Lf=zeros(8,N); 
%c3  
Lf(3,2)=2/rmax; 
for j=3:N 
    if mod(j,2)~=0  %coloana impara incepand de la 3 
        for rrr=j-1:-2:2   %r par 
                Lf(3,j)=Lf(3,j)+2*(j-1)*(-2)/rmax; 
        end 
    end 
    if mod(j,2)==0  %coloana para incepand de la 4 
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        for ttt=j-1:-2:3    %rimpar   
               Lf(3,j)=Lf(3,j)+2*(j-1)*(2)/rmax; 
        end 
        Lf(3,j)=Lf(3,j)+1*2*(j-1)/rmax; %adun T1(0)=1*coeficient 
    end 
end 
for i=1:N             
    Lf(8,i)=-omega+m*Wrmax/rmax;  %c8    
end                    

  
 Lg=zeros(8,N); 
for i=1:N 
    Lg(1,i)=(-1)^(i+1); %c1 
    Lg(4,i)=1; %c4   
end 

  
  Lh=zeros(8,N); 
for i=1:N 
    Lh(2,i)=(-1)^(i+1); %c2 
    Lh(5,i)=m/rmax;    %c5 
    Lh(6,i)=-2*Wrmax/rmax;    %c6 
    Lh(7,i)=-omega+m*Wrmax/rmax ;  % c7 
end 

  
  Lp=zeros(8,N); 
    for i=1:N 
    Lp(7,i)=m/rmax;  %c7  
end 
% +P'  din c6 
Lp(6,2)=2/rmax; 
for j=3:N 
    if mod(j,2)~=0  %coloana impara incepand de la 3 
        for rrrr=j-1:-2:2   %r par 
                Lp(6,j)=Lp(6,j)+2*(j-1)*(2)/rmax; 
        end 
    end 
    if mod(j,2)==0  %coloana para incepand de la 4 
        for tttt=j-1:-2:3    %rimpar   
               Lp(6,j)=Lp(6,j)+2*(j-1)*(2)/rmax; 
        end 
        Lp(6,j)=Lp(6,j)+1*2*(j-1)/rmax;%adun T1(0)=1*coeficient 
    end 
end 

  
MM=zeros(4*N); 
MM(1:4*N-8,:)=MM1; 
MM(4*N-7:4*N,1:N)=-Lf; 
MM(4*N-7:4*N,N+1:2*N)=-Lg; 
MM(4*N-7:4*N,2*N+1:3*N)=-Lh;  
MM(4*N-7:4*N,3*N+1:4*N)=-Lp; 
return 
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7.3 Summary and Published Papers Supporting This 

Chapter 

 

We have developed in this section a collocation technique that has the 

peculiar feature that can approximate the perturbation field for all types of 

boundary conditions, especially when the boundary limits are described from 

sophisticated expressions. Using descriptor technique [58, 82], widely used in the 

control theory community, combined with the algebraic properties of the 

Chebyshev orthogonal polynomials, the PDE system governing the stability of the 

flow was translated in hydrodynamic eigenvalue problem in matrix operators 

formulation. The problem of axial singularities was eliminated by inclusion of the 

boundary conditions as equations that complete the system that was collocated on 

reduced grid. 

The following papers based on the work presented in this chapter were 

published. 

In Proceedings of International Conferences (ISI) 

Paper 1. BISTRIAN, D.A., DRAGOMIRESCU, I., SAVII, G., STOICA, D., 

Spectral Differentiation Operators for Solving Hydrodynamic PSE Models, 

ICNAAM 2010, 8th International Conference of Numerical Analysis and Applied 

Mathematics, 19-25 September, Rodos, American Institute of Physics Conference 

Proceedings 1281, September 30, Melville, New York, pp. 448-451, ISBN 978-0-

7354-0831-9, ISSN 0094-243X, 2010. 

 

Paper 2. BISTRIAN, D.A., DRAGOMIRESCU, I., SAVII, G., Spectral 

Differentiation Operators And Hydrodynamic Models For Stability Of Swirling 

Fluid Systems, Mathematics And Computers In Science And Engineering-

Proceedings of the 14-th WSEAS International Conference on Applied 

Mathematics, 14-16 December, Puerto De La Cruz, Canary Islands, pp. 328-333, 

ISBN 978-960-474-138-0, ISSN 1790-2769, 2009. 

 

In Proceedings of International Conferences 
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Paper 3. BISTRIAN, D.A.,  DRAGOMIRESCU, I., MUNTEAN, S., SUSAN-

RESIGA, R., SAVII, G., Spectral Descriptor Approach For Solving Hydrodynamic 

PDE Models Of Swirling Flows With Applications, SIAM/RSME-SCM-SEMA 

Meeting Emerging Topics in Dynamical Systems and Partial Differential 

Equations DSPDEs'10,  May 31st, – June 4th, Barcelona, Spain, 2010. 

 

Paper 4. BISTRIAN, D.A., MAKSAY, ST., Numerical spectral study for 

viscous temporal stability of a trailing vortex, Knowledge Based Organisation 2008 

The 14th International Conference, Sibiu, ISSN 1843-6722, pp. 241-248, nov. 2008. 

 

In International Journals 

 

Paper 5. BISTRIAN, D.A.,  DRAGOMIRESCU, I., SAVII, G., Descriptor 

Techniques for Modeling of Swirling Fluid Structures and Stability Analysis, 

WSEAS Transactions On Mathematics, Issue 1, Volume 9, pp. 56-66, ISSN: 1109-

2769, 2010. 

 

Paper 6. BISTRIAN, D.A., SAVII, G., LATINOVIC, T., MAKSAY, ST., 

Stability Investigation Of Swirling Flows With Spectral Algorithms, IST 

Transactions Of Applied Mathematics-Modeling And Simulation, Vol. 1, No. 1 (2)  

pp. 20-27, ISSN 1913-8342, October 2010.  
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Chapter 8  

Validation of the New Numerical 

Procedures on a Batchelor Vortex 

Problem 
 

8.1 The Batchelor Vortex Profile 
 

The presence of a large variety of vortex flows in nature and technology 

raised many theoretical and numerical problems concerning the stability of such 

structures. In these conditions, in order to minimize the simulation requirements 

for nonlinear time-dependent problems, stability analyses of vortex motions 

become very important in flow control problems.  

Most of the vortex stability investigation concerned axisymmetric vortices 

with axial flow have been made in order to explain the vortex breakdown 

phenomenon, observed experimentally for the first time on delta wings [84, 85], in 

pipes [86] and in cylinders with rotating ends [87].  

The methods for hydrodynamic stability that we have presented so far 

have been tested on a particular benchmark model, the Batchelor or Q-vortex, 

developing in nature at tip of each delta wing, which have been the subject of 

many analytically and computational investigations, related in the literature [29, 

41, 43, 89]. 

The Q-vortex flow field is characterized by the velocity field 

( ) ( ) ( ),0,zV r V r V rθ=   , in form related in [43] and [89] 
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 ( )
2r

zV r a e−= + , 
2

( ) (1 )rq
V r e

r
θ

−= − , (8.1) 

where q  represents the swirl number defined as the angular momentum flux 

divided by the axial momentum flux times the equivalent nozzle radius and a  

provides a measure of free-stream axial velocity. 

In the particular case 0a = , Lessen and Paillet [83] have investigated 

stability characteristic of the velocity profile defined by (8.1). The solution was 

started with a Frobenius series at 0r =  and with an asymptotic solution at  

radial boundary maxr r= . Then a Taylor series expansion was used to integrate 

from both limits and the condition that the solution matched at some 

intermediate points was imposed. It was proven that for 1.5q ≥  all unstable 

modes are highly damped and stabilized. 

In [88] a Chebyshev spectral collocation method for temporal and spatial 

stability is also presented and the accuracy of the developed algorithm is tested 

on various flow configurations. For the same particular case, it is pointed out that 

for 3r >  the axial velocity zV  is essentially 0 and the tangential velocity 

approaches /q r , which is a potential vortex. In fact, this value is exactly the 

max 3r =  chosen by Lessen and Paillet in [83] to start their asymptotic solution.  

In [42, 43] the numerical investigation of the two-point boundary value 

problem was assessed based on a shooting method. The properties of the 

Batchelor vortex are pointed out by considering them as functions of the swirl 

ratio q  and the external flow parameter a . 

We have compared the numerical results obtained using the stability 

algorithms we have developed in Chapter 5, Chapter 6 and Chapter 7 with results 

related in the literature by Professor Olendraru et al. in paper [43]. 
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8.2 Radial Boundary Adapted Method Validation and 

Results 
 

Radial boundary adapted method that we develop in Chapter 5 was used 

for stability investigation of the non axisymmetric cases, having the mode number 

1m > , using a modal trial base based on orthogonal expansion functions 

satisfying the Dirichlet boundary conditions. 

The computed spectra of the eigenvalue problem (5.23)-(5.26) that governs 

the spatial stability of Q-vortex in this case is depicted in Figure 8.1. 

 

Figure 8.1 Spectra of the hydrodynamic eigenvalue problem computed at 

0.01ω = , 3m = − , 0a = , 0.1q = . 

 

 In spatial stability analysis that we performed in this case, the eigenvalue 

with the largest negative imaginary part represents the critical eigenvalue of the 

most unstable mode, as described in formula (2.49). A comparison between the 

value of the critical eigenvalue returned by the radial boundary adapted 
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algorithm and the value presented in reference [43] where a shooting method was 

used, is presented in Table 8.1. 

 

Table 8.1 Comparative values of the most unstable mode at 0a = , 0.1q = , 

0.01ω =  for the case of the counter-rotating mode 3m = − : eigenvalue with largest 

imaginary part crk . 

 

Shooting method 

results [43] 

Radial boundary adapted  

results 

0.506 0.139crk i= −    0.508370160705651 - 0.141819497036924crk i=  

 

 Considering then the most unstable mode identified by the eigenvalue with 

the largest negative imaginary part (as seen in Figure 8.1) we plot the radial 

distribution of the velocities perturbation mode in Figure 8.2. A comparison 

between our results and those obtained by Olendraru et al. [43] is depicted again. 

It is obvious that our numerical results obtained by radial boundary adapted  

algorithm are in good agreement with the results of Olendraru et al., when using 

a shooting method. The convergence of the numerical algorithm is shown in Table 

8.2.  

 

Table 8.2 Convergence behavior of the critical eigenvalue for the most unstable 

mode 3m = −  with 0.01ω = ,  0a = , 0.1q = . 

Spectral 

parameter N 

Axial wavenumber crk  

30 0.368745231519635 - 0.063754824589523i  

50 0.387514934512687 - 0.084512374584563i  

80 0.498571235876258 - 0.098273651578456i  

100 0.508571649234756 - 0.141957563824185i  

150 0.508370160705651 - 0.141819497036924i  

180 0.508375478563258 - 0.141819452369852i  

250 0.508375445872369 - 0.141819474528937i  

300 0.508375445865974 - 0.141819474563815i  
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Figure 8.2 Comparative absolute values of eigenfunction amplitudes of the most 

unstable mode 0.01ω = , 3m = − , 0a = , 0.1q = , considering the critical 

eigenvalue with the largest imaginary part 0.50842 0.14243crk i= − . 

 

In order to evaluate the spectral accuracy of the algorithm, we considered 

the residual vector as a three parameter set 
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As the spectral parameter N is varying we retain the norm of the error 

vector  

 ( ) ( )( )( )
1/2

, ,er m N k NΠ = Π∑  (8.3). 

Figure 8.3 presents the behavior of the error as the number of collocation 

node is increasing. It is shown that the error decays at an exponential rate when 

over 150 collocation nodes are used. 

 

Figure 8.3 Behavior of the eigenvalue problem residual as function of the spectral 

parameter N . 
 

Our results agree very well with the existing ones. The numerical procedure 

directly provided relevant information on perturbation amplitude for stable or 

unstable induced modes, the maximum amplitude of the most unstable mode and 

the critical distance where the perturbation is the most amplified. Other results 

are presented. The most amplified axial wavenumber in the zero-external flow jet 

case for various modes are listed in Table 8.3  and the radial distribution of 

perturbation velocity field for mode 2m =  is depicted in Figure 8.4. 
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Table 8.3 The most amplified axial wavenumber for various modes.  
 

m  ( ),cr r ik k k=  

2  (0.012728546932547, -0.900998541264957) 

3  (0.238598528459632, -0.000437147254586)  

4  (0.358181314285469, -0.001074521951956)  

5  (0.626902315964782, -0.001880624582356)  

 

Figure 8.4 Radial distribution of velocity field for perturbed flow with non 

axisymmetric mode 2m = , 0a = , 0.05q =  0.1ω = . 

 

8.3 2L -Projection Method Validation and Results 
 

The 2L -projection method, also known as the Chebyshev tau method 

represents an efficient numerical technique to solve eigenvalue problems with 

sophisticated boundary conditions by translate it into a linear system of equations. 
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We employed this technique to develop numerical algorithms for bending modes 

investigation, having the mode number 1m = ± . 

 In order to compare our results performed upon the Q-vortex velocity 

profile with the ones from [43] numerical evaluations of the axial wavenumber k  

were obtained for various sets of parameters associated with the investigated 

modes. In Table 8.4 these values are presented in comparison with the ones from 

reference [43].  

  

Table 8.4 Comparative results of the most amplified spatial wave of the 

Batchelor-vortex: eigenvalue with largest imaginary part ( ),cr r ik k k= . 

1m =  1m = −  

Shooting method [43] 

( )0.6,0crk =  ( )0.454, 1.276crk = −  

2L  Projection method 

( )0.49,0crk =  ( )0.57, 1.358crk = −  

 

The next figures illustrate the behavior of the perturbation amplitudes for 

bending modes, in comparison with the results obtained by Olendraru et al [43]. 

a  
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b  

Figure 8.5 Absolute values of eigenfunction amplitudes computed at: 

a) 1m = , 0a = , 0.7q = , 0.0425ω = , ( )0.49,0crk =  using 7N =  expansion 

terms.  

b) 1m = − , 1.268a = − , 0.6q = , 0.78ω = − , ( )0.57, 1.358crk = −  using 8N =  

expansion terms. 

 

Following Tadmor [89], when differencing analytic functions using 

Chebyshev pseudo spectral methods, the error committed is expected to decay to 

zero at an exponential rate. The convergence behavior of the algorithm with 

respect to the number of expansion terms is shown in Table 8.5 in comparison with 

ones obtained using the radial boundary adapted technique in our previous 

investigations [72], [90].   

Clearly the numerical computation costs were less expansive in the 

projection method approach since the number of terms in the approximations was 

significantly reduced. In fact, in comparison with the boundary adapted collocation 

method this number was more than twenty times reduced. In consequence, with a 

reduced by far computational time, we can obtain accurate results in an acceptable 

agreement with existing ones. 
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Table 8.5 Comparison of the convergence behavior of the algorithm assessing 

radial boundary adapted method and 2L -projection method. 
 

N Axial wavenumber crk  

Radial boundary adapted [72], [90] 

80  0.498571235876258 - 0.098273651578456i  

100  0.508571649234756 - 0.141957563824185i  

150  0.508370160705651 - 0.141819497036924i  

180  0.508375478563258 - 0.141819452369852i  
2L - Projection 

5  0.325249174525684 1.084625097561478i−  

6  0.491576258945131 1.184214359658741i−  

7  0.551854623988265 1.371519652384657i−  

8  0.570546235874152 1.358152468512479i−  

      

Although the projection method is a very efficient technique, the inclusion of 

the boundary conditions as equations in the system of the generalized eigenvalue 

problem have been observed to be one cause of spurious eigenvalues. The spurious 

eigenvalues, which are not always easy to identify, may lead one to a false 

conclusion regarding the stability of the fluid system, thus the elimination of them 

is of great importance. These are values returned by the algorithm which do not 

satisfy the eigenvalue problem. The spurious eigenvalues problems have been the 

attention of much study recently. Gardner et al. [77] and McFadden et al. [91] 

describe the tau methods to avoid spurious eigenvalues and in Dongara [80] the 

occurrence of the spurious eigenvalues is assessed in application to the Benard 

convection problem. 

We implement in our numerical procedure a code sequence that identifies if 

an eigenvalue of the spectra is spurious or not. First the algorithm provides the 

entire spectra, then calculates the residual vector of the eigenvalue problem 

 ( )T v Ψ v v= , = , , ,
T

IDENTIFIER k f g h p⋅ ⋅ − ⋅  (8.4) 
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with  

 ( ) { } { } { } { }( )1 1 1 1
, , , , , ,

TT N N N N
k k k kk k k k

f g h p f g h p
= = = =

=  (8.5) 

for each eigenvalue of the spectra. 

A true value of k  must satisfy the eigenvalue problem. We evaluate the 2L  

norm of the vector with respect to a given tolerance ε  . If the condition 

 ( ) >norm IDENTIFIER ε  (8.6) 

holds, the eigenvalue k  is declared spurious and discarded form the spectra. 

Figure 8.6  presents the residual of the eigenvalue problem, solved using the QZ 

algorithm implemented in the high level computing platform Matlab and the 

corresponding histogram.  
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Figure 8.6 Residual of the eigenvalue problem (up) and corresponding histogram 

(down). 

 

For bending modes 1m =  and 1m = − , the eigenvalue problem and its 

sophisticated boundary conditions were translated into a linear system using a 

modified tau method based on orthogonal shifted Chebyshev expansions. The 

numerical approximation of the unknown perturbation field was searched directly 

in the physical space. The collocation method is more accurate, however the 

projection method is less expensive with respect to the numerical implementation 

costs, i.e. numerical results are obtained for a much smaller number of terms.  

8.4 Spectral Descriptor Method Validation and 

Results 
 

The basic flow under consideration for the validation of the proposed 

method is the Batchelor vortex case or the q-vortex [43], that trails on the tip of 

each delta wing of the airplanes. The properties of the Batchelor vortex were 

pointed out in Olendradru et al. [43] where a shooting method was used. In order 
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to compare our results with the ones from [43] numerical evaluations of the axial 

wavenumber k  were obtained for various sets of parameters associated with the 

investigated modes.  

The spectral boundary adapted algorithm was developed in Chapter 5 to 

investigate the non axisymmetrical modes 1m >  satisfying Dirichlet boundary 

conditions, however, the spectral collocation method presented in Chapter 7 

allowed us to investigate the hydrodynamic models with sophisticated boundary 

conditions for all mode numbers. 

In Table 8.6 the values of the most unstable eigenvalue of the Q-vortex 

spatial problem are presented in comparison with the ones from Olendradru et al. 

[43] and the ones obtained by us using the radial boundary adapted technique in 

our previous investigation [90]. The numerical results obtained employing the 

collocation method are in agreement with the results presented in reference [43]. 

 

Table 8.6 Comparative results of the most amplified spatial wave of the 

Batchelor-vortex: eigenvalue with largest imaginary part ( ),cr r ik k k= . 

Mode 3m = −  1m =  1m = −  

Shooting method 

 [43] 

( )0.506, 0.139−  ( )0.6,0  ( )0.761, 0.336−  

Boundary 

adapted 

collocation  

(previous 

research [90]) 

 

( )0.50842, 0.14243−

 

 

- 

 

- 

Collocation 

method (this 

research) 

( )0.50819, 0.14192−

 

( )0.5611,0  ( )0.76146, 0.33722−

 

 
 

The spectra of the eigenvalue problem (7.28) governing the spatial stability 

of the Q-vortex for mode 3m = −  is depicted in Figure 8.7. 
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Figure 8.7 Spectra of the Q-vortex hydrodynamic eigenvalue problem computed 

at parameters 0.01ω = , 3m = − , 0a = , 0.1q = , for 100N =  collocation nodes. 

 
 

Radial distribution of the velocity perturbation mode is depicted in the 

next figures. For non axisymmetric conditions Figure 8.8a shows the profiles 

without stabilization and the Gibbs phenomenon occurs. In Figure 8.8b a 

smoothing procedure was applied by multiplication with a Lanczos σ  factor [24] 

 

( ) ( ) *

1

, , , , , , ,

2
sin , 1 .

2
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k N
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∑
 (8.7) 
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a  

b  
 

Figure 8.8 Comparison of the absolute values of disturbances of the most 

unstable mode 0.01ω = , 3m = − , 0a = , 0.1q = , considering the critical 

eigenvalue with the largest imaginary part 0.50819 0.14192crk i= − , without 

stabilization (a) and with Lanczos stabilization (b). 
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For bending modes investigation the results are depicted in the next figures. 

Table 8.7 lists various parameters for which we have investigated the Q-vortex 

profile in order to validate the spectral collocation algorithm. 

 

Table 8.7 Numerical results comparison for bending modes investigation. 
 

1m = −  

crk : Shooting method 

[43] 

crk : Collocation 

method  

0.78ω = − , 

1.268a = − ,

0.6q =  (0.454, 1.276)−  (0.45428, 1.27835)−  

 

Q-vortex 

parameters 

0.2ω = , 0.6q =  

0.01a =  

( )0.761, 0.336−  ( )0.76146, 0.33722−  

1m =  

crk : Shooting method 

[43] 

crk : Collocation 

method 

Q-vortex 

Parameters 

0.0425ω = ,

0.7q = , 0a =  

( )0.6,0  ( )0.5611,0  

 

 
 

Figure 8.9 Comparison of the radial evolution of the disturbances of the most 

unstable mode 1m = − , at 0.78ω = − , 1.268a = − , 0.6q = , considering the critical 

eigenvalue with the largest imaginary part 0.45428 1.27835crk i= − . 
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Figure 8.10 Comparison of the radial evolution of the disturbances of the most 

unstable mode 1m = − , at 0.2ω = , 0.6q = , 0.01a = , considering the critical 

eigenvalue with the largest imaginary part 0.76146 0.33722crk i= − . 

 

 
Figure 8.11 Comparison of the radial evolution of the disturbances of the most 

unstable mode 1m = , at 0.0425ω = , 0.7q = , 0a = , considering the critical 

eigenvalue with the largest imaginary part 0.5611crk = . 
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In non axisymmetric mode 2m = − , we observed the behavior of the growth 

rate ik−  and the axial wavenumber rk  as functions of real frequency for several 

swirl parameters. 

 
Figure 8.12 Variation of the growth rate as function of temporal frequency in 

spatial investigation of Q-vortex at 2m = −  mode, 0a = . 

 
Figure 8.13 Variation of the axial wavenumber as function of temporal frequency 

in spatial investigation of Q-vortex at 2m = −  mode, 0a = . 
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8.5 Comparative Results 
 

We performed in this Chapter validations of the numerical algorithms 

developed for stability analysis of swirl hydrodynamic systems. Comparisons with 

results from literature were illustrated. In the next table we present a review of 

the results obtained in particular case of non axisymmetrical modes using the 

modal boundary adapted collocation technique, the projection Chebyshev-Tau 

technique and the spectral collocation method, developed during this survey. 

 

Table 8.8 Comparative results of the most unstable spatial mode of the 

Batchelor-vortex at 0a = , 0.1q = , 0.01ω =  for the case of mode 3m = − : 

eigenvalue with largest imaginary part ( ),cr r ik k k=  and estimated numerical 

error. 
 

                     Eigenvalue of most unstable mode  

                                 ( ),cr r ik k k=  

 

Shooting 

method [43] 

 

( )0.506, 0.139−  

 

Spectral 

parameter N  

Estimated error 

*

1 100%
Shooting

Val

Val
− ⋅  

Radial 

boundary 

adapted [90] 

( )0.50842, 0.14243−  150  4.14%  

2L -projection 

[70] 

( )0.46375, 0.27935−  8  16.5%  

Spectral 

collocation [82] 

( )0.50819, 0.14192−  100 2.94%  

 

The results were in good agreement with the ones from reference  

Olendradru et al. [43].  

The collocation method is the most accurate technique, however the 

projection method is less expensive, i.e.numerical results are obtained using a 

much smaller series expansion.  
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Chapter 9  

Parallel and Distributed 

Investigation of the Vortex Rope 

Model Using Matlab Distributed 

Computing Server on a Windows 

Operating System Cluster 
 

9.1 Considerations About Parallel Computing 
 

The test platform is represented during this survey by a cluster based on 

the Matlab Parallel Processing Toolbox. Using the internal cluster manager from 

Matlab we were able to evaluate the algorithms behavior using a distributed 

process. In this situations we have performed the profiling and we have noticed a 

speed increase of the algorithms compared to a single computer run. The cluster 

was conceived using homogenous hardware 

Dell Optiplex 755 

Intel(R) Core(TM)2 Duo CPU, 2.66GHz 

1.97 GHz, 1.95 GB of RAM 

For numerical investigation of swirling flows stability, a Windows operating 

system cluster was configured in Computer Aided Mathematics and Numerical 

Analysis Laboratory of the Engineering Faculty of Hunedoara (Figure 9.1).  

MATLAB Distributed Computing Server (MDCS) is a toolbox that lets 

users solve computationally and data-intensive problems by executing MATLAB 

and Simulink based applications on a computer cluster. 

One of the major tasks of the MDCS service is to recover job manager and 
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worker sessions after a system crash, so that jobs and tasks are not lost as a result 

of such accidents.  To run the MDCS, the license manager must be running on the 

head node. We made sure the license manager was running by performing a Status 

Enquiry. The next step in configuring the cluster was to start the job manager and 

workers (Figure 9.2).  

 

Figure 9.1 Computer Aided Mathematics and Numerical Analysis Laboratory of 

the Engineering Faculty of Hunedoara, “Politehnica” University of Timisoara. 

 

 

Figure 9.2 Scheme of cluster configuration. 

 

In computational fluid dynamics, several software packages solving either 

the Euler or the Navier-Stokes equations around complex geometries have been 

developed and are currently used by aircraft or engine manufacturers. 

Venkatakrishnan et al. [92] in early 1992, demonstrated that a good 
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supercomputer performance can be reached by implementing a 2D unstructured 

flow solver on parallel computers. They showed that a careful implementation of 

the message passing routines is a critical point. 

 In 1995, Lanteri [93] developed a parallel version of an industrial code 

based on a mixed finite element/finite volume method. The parallelization strategy 

combines mesh partitioning and message passing programming model such that 

the same serial code is going to be executed within every subdomain. The 

literature on these topics can be considered exhaustive for two-dimensional 

applications and parallel machines of the old generation. The same cannot be said 

for three-dimensional complex flows and for the new machines in terms of 

optimization of the performances and assessment of algorithms and techniques (i.e. 

[94-96]). 

Quantitative accuracy is readily achieved in flows in which the balance of 

fluid-mechanic processes is dominated by convection and pressure gradients. A 

serious challenge to CFD is poosed by flows combining complex strain with 

substantial turbulence transport.  

The difficulty occurred in numerical simulation of swirling flows consists in: 

• the simulation of swirling flows is highly CPU and memory intensive;  

• present vortex models, however elaborate, are simplified models of the real 

flows leading to misinterpretation of the real dynamic of the fluid; 

• the models which are most appropriate to complex flows consist of many 

transport equations which are strongly coupled and highly nonlinear, thus difficult 

to solve numerically; 

• due to the complexity of the model, a high density mesh is required, 

especially at wall boundaries where the fluid viscosity affects the turbulence 

processes. 
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The algorithms that we developed in this thesis for hydrodynamic stability 

investigation of swirling flows are based on meshless techniques. The collocation 

technique that we have used in numerical computation has the benefit of reducing 

the computational time compared to finite element based algorithms and they 

reach an exponential convergence. Secondly, running the algorithms on a cluster 

configuration we can take the benefits of parallel processing capabilities offered by 

the Matlab environment.  

A major feature of MATLAB [97] consists in allowing users to concentrate 

on the techniques for creating parallel algorithms, instead of the details of the 

syntactic mechanics of writing parallel programs. When using parallel computing 

with Matlab designing, coding, debugging and testing techniques are required to 

quickly produce well performing parallel programs in a matter of hours instead of 

weeks or months.  

In this case, we include an efficient numerical library as NAG Toolbox for 

MATLAB [98], beaside standard Matlab functions, providing good eigensolver 

solutions for the eigenvalue problems.  

9.2 Theoretical Model and Computational Domain  
 

The 3d domain of the physical problem is modeled based on 2d 

axisymmetrical domain. Using the boundary conditions determined and the 

velocity profiles the spectral model is build using the shifted Chebysev functions.  

The theory used in our investigations of precessing helical vortices in 

swirling flows was developed by Alekseenko et al. [32] up to analytical solutions for 

velocity and pressure fields in cylindrical and conical geometries. A further step 

toward practical applications in hydraulic machines is presented by Kuibin et al. 

[99], where it is shown that the vortex rope geometry, precession frequency, as well 
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as the wall pressure fluctuations can be computed given a set of swirling flow 

integral quantities. 

The theoretical approach is based on a model of vortex with a core in form 

of helical rope of circular cross-section, introduced in [100] with boundary 

conditions presented in Chapter 3. 

Consider a model of vortex with a core in form of helical rope of circular 

cross-section with radius ε  (Figure 9.3). Let us denote the helix radius as a , pitch 

2h π= l , and intensity of the vortex Γ . The helix is placed coaxially in a tube of 

radius R , and velocity at the tube axis is 0u . Suppose that the axial vorticity 

component zω  is uniform inside the core and outside it the flow is potential. 

The vortex stability is analized both from the point of spatial stability and 

from the point of temporal stability. The structure of the algorithm is depicted in 

Figure 9.4. 

Stability investigation will provide the necessary information concerning the 

critical parameters which influence the flow and vortex stability.  

 

Figure 9.3 The model of helical vortex. 
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In the numerical stability evalualuation of the vortex rope profile we have 

considered two approaches. 

• influence of discharge coefficient on hydrodynamic stability  

• study of absolute and convective instability of the swirl system with discrete 

velocity profiles. 
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Figure 9.4 The flow chart of the vortex hydrodynamic stability algorithm. 

9.3 Influence of Discharge Coefficient on 

Hydrodynamic Stability  
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The start of the stability analysis presented in this section is the analytical 

representation of the velocity field, derived by Professor Resiga et al. [5]. The 

mean swirling flow downstream the Francis turbine runner can be accurately 

represented as a superposition of three distinct vortices 

 ( )
2 2

0 1 22 2
1 2

exp expz

co flowing counter flowing

r r
V r U U U

R R

− −

   
= + − + −      

   1442443 1442443

, (9.1) 
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2 2 2 2
1 2

0 1 22 2
1 2
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counter rotating co rotating

R r R r
V r r

r rR R
θ

− −

      
= Ω + Ω − − + Ω − −                  14444244443 14444244443

, (9.2) 

where zV  and Vθ  represent the axial (Figure 9.5) and circumferential velocity 

(Figure 9.6) component, respectively, in a parallel flow assumption. 0U , 1U , 2U  

are the vortex characteristic axial velocities, 0Ω , 1Ω , 2Ω  are the vortex 

characteristic angular velocities, and 1R , 2R  are the vortex core radii, determined 

by fitting the experimental data.  

According to the qualitative picture of this three vortex system, Vortex 0 is 

a rigid body rotation with angular speed 0Ω  and we can associate with it a 

constant axial velocity 0U . Vortex 1, which has a vortex core extent about half 

the wall radius, is counter-rotating and co-flowing with respect to vortex 0. The 

strength of this vortex, both in 1Ω  and 1U  is growing as the turbine discharge 

increases. Vortex 2 has a core at least four times smaller than vortex 1, is co-

rotating and counter-flowing with respect to vortex 0, and its strength increases as 

the discharge decreases.  

Swirl parameters found by fitting formulas (9.1)-(9.2) to experimental data 

for eight operating points are listed in Table 9.1. 

 

Table 9.1 Swirl parameters for investigated turbine operating points: X  

ϕ  -Discharge coefficient, X ψ -Energy coefficient 
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Operating point Swirl parameters 

X ϕ  ψ  X Speed 

[rpm] 
0Ω  1Ω  2Ω  0U  1U  2U  1R  2R  

0.34 1.18 1000 0.31765 -0.62888 2.2545 0.30697 0.01056 -0.31889 0.46643 0.13051

0.35 1.18 1000 0.28980 -0.69745 3.0923 0.30940 0.047003 -0.30049 0.40334 0.10266

0.36 1.18 1000 0.26675 -0.79994 3.3512 0.31501 0.07324 -0.29672 0.36339 0.09304

0.368 1.18 1000 0.27113 -0.80310 3.4960 0.31991 0.08710 -0.27350 0.37291 0.08305

0.37 1.18 1000 0.27388 -0.77707 3.49045 0.32092 0.09043 -0.23936 0.39260 0.08161

0.38 1.18 1000 0.27536 -0.81730 3.5187 0.32447 0.10618 -0.23545 0.38125 0.07188

0.39 1.18 1000 0.27419 -0.86579 3.2687 0.32916 0.12677 -0.19061 0.37819 0.06502

0.40 1.18 1000 0.25796 -0.90445 2.34395 0.33289 0.16626 -0.13164 0.37477 0.05173

0.41 1.18 1000 0.28802 -0.96687 1.4590 0.33623 0.19121 -0.09215 0.39108 0.05012

 

 
Figure 9.5 The axial velocity component for different discharge coefficients. 
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Figure 9.6 The circumferential velocity component for different discharge 

coefficients. 
 

9.3.1 Investigation of Axisymmetric Mode 

The simple stability analysis carried out in Resiga et al. [5] can be recovered 

as a particular case for axisymmetric mode 0m =  and frequency 0ω = . In these 

conditions, the mathematical model reduces to a much simpler form in which the 

number of components of the eigenvector was reduced 

 

( )

0,

0,

0

r

z r

z r z

krF G rd G

kV G d P

k V F P d V G

+ + =

− =

+ + =

 (9.3) 

with the corresponding boundary conditions 

 0 0,r r wallG d F d P at r r= = = = . (9.4) 

Obviously, a simple handling of the equations from (9.3) should lead to an 

eigenvalue problem written in one perturbation function only equivalent to the one 

from [5] written in the perturbation of the streamfunction of the basic flow  ψ  
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when the auxiliary variables are used. The amplitude of the radial velocity 

perturbation G  should then be proportional to 
1

r
ψ  and the amplitude of the 

axial velocity perturbation with 
1 d

r dr

ψ
. 

As a result, Figure 9.7 presents the radial perturbation computed using the 

algorithms presented in this thesis against the values obtained in Resiga et al. [5].  

 

Figure 9.7 Comparison of radial distribution r G  corresponding to the 

eigenvalue with the largest negative imaginary part in axisymmetric mode 

0, 0m ω= = , for discharge coefficient 0.36ϕ = . 

 

One can observe a shifted distribution of the radial disturbance r G  

computed based on our algorithms but additional conditions must be considered in 

order to increase the accuracy. Due to the linearization procedure, the 

perturbations are disconnected by the basic flow. Consequently, the eigenfunction 

values are not significant but the shapes provide the relevant information.  
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 The evolution of the radial disturbance along the radial direction is also 

presented in Figure 9.8. As the discharge coefficient is increasing the absolute 

values of the radial disturbance suffer reduction. 

 

Figure 9.8 Evolution of the radial disturbance | |G  along the radial direction for 

several increasing discharge coefficients. 

 

Varying the frequency omega, we denote by the critical frequency crω , the 

temporal frequency corresponding to maximum growth rate ik−   for a given 

discharge coefficient. The critical frequencies and their corresponding discharge 

coefficients for numerical investigation of the axisymmetric mode mode are listed  

in Table 9.2 and the evolution of the critical frequency is presented in Figure 9.9. 

 

Table 9.2 The critical frequencies corresponding to axisymmetric mode 0m =  at 

several operating poins.   
 

ϕ  0.34  0.35  0.36  0.37  0.38  0.39  0.4  0.41  

crω  0.1007  0.2005  0.3002  0.1007  0.3002  0.2005  0.2005  0.3002  
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Figure 9.9 Evolution of the critical frequency as function of discharge coefficient 

for axisymmetric mode 0m = . 

 

Table 9.3 Eigenvalues of the most unstable axisymmetric mode at several 

operating points. 
 

Frequency 0ω =  Eigenvalue of the most unstable mode 

Discharge coefficient 0m =  

0.34  0.0033700 0.0001137i−  

0.35  0.0030653 0.0002591i−  

0.36  0.0028728 0.00022689i−  

0.37  0.0026571 0.00022442i−  

0.38  0.0025342 0.0001309i−  

 

In spatial stability analysis that we performed on the swirl system with 

velocity profiles given by relations (9.1) and (9.2) with parameters corresponding 

to several discharge coefficients, the growth rate of the perturbed state is 

measured by the imaginary part of the most unstable eigenvalue. The most 

unstable eigenvalues of the axisymmetric mode investigated numerically at several 

discharge coefficients are listed in Table 9.3. For all discharge coefficients the 
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growth rates are insignificantly small, i.e. the flow in axisymmetric state remains 

stable. 

9.3.2 Investigation of Bending Modes 

 We present in the following numerical results obtained employing the 

spectral collocation algorithm for hydrodynamic stability investigation of the 

bending modes of the swirl system.  Figure 9.10 and Figure 9.11 illustrate the 

form of the axial and the radial disturbance, respectively, in case of bending mode 

1, 0m ω= = , at several operating points. It is shown that the sensitivity on axial 

perturbations is located near the center, for a small radius. 

 

Figure 9.10 Evolution of the axial disturbance | |F  on radial direction, for 

investigated mode 1, 0m ω= = , for several discharge coefficients. 
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Figure 9.11 Evolution of the radial disturbance | |G  on radial direction, for 

investigated mode 1, 0m ω= = , for several discharge coefficients. 

 

Table 9.4 Eigenvalues of the most unstable modes for bending modes 

investigation, at several operating points. 
 

Frequency 0ω =  Eigenvalue of the most unstable mode 

Discharge coefficient 1m = −  1m =  

0.36  0.035762 6.7512i−  0.11258 0.010826i−  

0.37  0.030159 6.7151i−  0.19658 0.014276i−  

0.38 0.049165 6.6818i−  0.33747 0.029463i−  

0.39  0.053326 6.6521i−  0.50339 0.059298i−  

0.40  0.081607 6.6137i−  0.71225 0.064163i−  

0.41  0.085371 6.5942i−  0.91892 0.078713i−  

 

In Table 9.4 the eigenvalues of the most unstable modes are listed for both 

bending modes 1m = ± . Spatial stability analysis was performed for several 

discharge operating points. The imaginary part of the critical eigenvalue is a 

measure of the growth rate of the perturbed flow. It is noticeable that the growth 

rates of the negative mode 1m = −  are significantly larger than the ones of the 
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counterpart mode 1m = , as Figure 9.12 depicts, i.e. the flow in negative mode 

1m = −  is most unstable than the bending mode flow 1m = . 

 
Figure 9.12 Distribution of the critical eigenvalues of the perturbed flow at 

several operating points, in bending modes spatial investigation. 

 

The critical frequencies and their corresponding discharge coefficients for 

numerical investigation of 1m = −  mode and 1m =  mode are listed in Table 9.5 

and Table 9.6, respectively. The evolution of the critical frequency is depicted in 

Figure 9.13 for mode 1m = −  and in Figure 9.14 for mode 1m = . 

 

Table 9.5 The critical frequencies corresponding to bending mode 1m = −  at 

several operating poins.   
 

ϕ  0.34  0.35  0.36  0.37  0.38  0.39  0.4  0.41  

crω  0  0.106  0.106  0.212  0.212  0.424  0.424  0.424  
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Table 9.6 The critical frequencies corresponding to bending mode 1m =  at 

several operating poins.   
ϕ  0.34  0.35  0.36  0.37  0.38  0.39  0.4  0.41  

crω  0.318  0.318  0.318  0.318  0.1855  0.1749  0.106  0.0477  

 

Figure 9.13 Evolution of the critical frequency as function of discharge coefficient 

for mode 1m = − . 

 
Figure 9.14 Evolution of the critical frequency as function of discharge coefficient 

for mode 1m = . 
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9.4 Study of Absolute and Convective Instability of 

the Swirl System With Discrete Velocity Profiles 

9.4.1 Computational Aspects 

The vortex rope in a hydro turbine draft cone is one the main and strong 

sources of pulsations in non-optimal modes of hydro turbine operation. Kuibin et 

al. examine in [100] the case of a Francis turbine model operated at partial 

discharge, where a strong precessing vortex rope is developed in the discharge cone 

downstream the runner. Experimental data available in reference [100] provide the 

circumferentially averaged axial and tangential velocity profiles, as well as the 

vortex rope geometry, precessing frequency and the level of pressure fluctuation at 

the wall.  

 

Figure 9.15 Axial and circumferential velocity profiles of the vortex rope model. 
 
 

The start of the stability analysis presented in this section is represented by 

the discrete velocity profiles (depicted in Figure 9.15) at the runner outlet 
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determined by Kuibin et al. in [100] and computed with the model of helical 

vortex that we described in Section 9.2. 

The numerical investigation employed both the spatial (convective) analysis 

and temporal (absolute) analysis. The two-point eigenvalue problem (7.28) 

governing the inviscid spatio/temporal stability analysis is solved assessing the 

spectral collocation technique in descriptor formulation, detailed in Chapter 7 and  

validated in Chapter 8. The numerical code was further developed for parallel 

processing in order to take benefit of parallel and distributed compute system.  

9.4.2 Numerical Validation With Experimental Results 

The numerical results obtained during our simulations are summarized in 

Table 9.7. 

Table 9.7 The critical frequency and the maximum growth rates obtained for the 

investigated modes. 
 

Mode m −3 −2 −1 0 1 2 3 
Spatial stability results 

Critical 
frequency 

0.4 
 

0.4 0.4 0.3 0.3 0.4 0.4 
 

Maximum 
growth rate 

0.1379 
 

0.1255 
 

0.0603 
 

0.0345 
 

0.9223 
 

0.8102 
 

0.8224 
 

Temporal stability results 
Critical 
axial wave 
number 

 
4 

 
4 

 
4 

 
3.2 

 
3.2 

 
3.2 

 
2.4 

Maximum 
growth rate 

0.2025 0.0661 0.0108 0.0388 0.1802 0.2701 0.2578 

 

Figure 9.16 depicts the variation of the disturbance growth rates as function 

of mode number in temporal vs spatial stability analysis. One may notice from 

Figure 9.16 that the positive modes have an increased amplitude showing that the 

instability is more likely to occur in this situations. The growth rate of the 

disturbance in spatial analysis has higher values than in the case of temporal 
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analysis for all investigated modes, i.e. the flow exhibit a spatially (convective) 

instability. 

 
Figure 9.16 Maximum growth rate as function of mode in spatial analysis and 

temporal analysis. 
 

Linear stability analysis is used to help in the interpretation of the observed 

dynamics. Figure 9.17 through Figure 9.19 present a perspective of the evolution 

of the pressure magnitude of the flow system in the Francis turbine, for non-

axisymmetric perturbation.  

In spatial stability investigation of the flow, as shown in Figure 9.17, the 

evolution of the perturbation in pressure as function of time, at the wall boundary, 

extracted at several locations on the non-dimensional axial coordinate is depicted. The 

magnitude of the pressure is growing toward the outlet of the draft tube, but 

decreases in time, meaning that the flow is convective unstable. Figure 9.18 depicts 

the amplitudes of the disturbances extracted at several locations on the wall boundary. 

Amplitudes peak and decay as time increases, observation that leads to the 

conclusion that the flow exhibit pressure fluctuations at the wall.  

   Absolute instability of the perturbed flow is depicted in Figure 9.19. The 

growing evolution of the perturbation in pressure is observed as it evolves in time.  
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As time increases the disturbances grow in magnitude, their leading edges move 

toward the wall boundary along the draft tube.  

 
Figure 9.17 Convective instability of the flow in hydraulic turbine draft tube 

after perturbing flow. The curves are extracted at several non-dimensional time 

units 10,15,18,22,25t =  at the wall boundary. 

 

Figure 9.18 Fluctuating pressure as function of time, at the wall boundary, 

extracted at several locations on the draft tube: non-dimensional axial coordinates 

1.71,2.43,3.30,4.12,4.25z = . 
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Figure 9.19 Absolute instability of the flow in hydraulic turbine draft tube after 

perturbing flow. The curves are extracted at several non-dimensional time units 

10,15,18,22,25t =  at the wall boundary. 

 

The dimensionless rope frequency is defined as /rope ropeω = Ω Ω . i.e. it 

represents the ratio between the rope precession angular speed and the runner 

speed. In [100] it was found that the uniform core frequency yields 0.305ropeω = , 

the same as in the experiment of Ciocan et al. [101]. 

The dynamics of the rotating vortex taking place in the discharge ring of a 

Francis turbine for partial flow rate operating conditions and cavitation free 

conditions is studied in [101] by carrying out both experimental flow survey and 

numerical simulations. 2D laser Doppler velocimetry, 3D particle image 

velocimetry, and unsteady wall pressure measurements were performed to 

investigate thoroughly the velocity and pressure fields in the discharge ring and to 

give access to the vortex dynamics. Unsteady RANS simulation were performed 

and compared to the experimental results. 

We found in our research that the frequency of the vortex precession equals 

0.3crω =  for mode numbers { }0,1m = , which is the same as the measured 
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dimensionless frequency 0.3ropeω =  in [100] and the value obtained in the 

experiment [101] (Figure 9.20). 

 
Figure 9.20 Critical frequency as function of mode. The value of the critical 

frequency 0.3crω =  for modes { }0,1m =  is the same as in the experiments [100] 

and [101]. 
 

The first step in finding the vortex rope configuration for a given 

circumferentially averaged swirling flow is to examine the helical symmetry 

property of the flow. It is shown in [100] that the helical symmetry condition 

implies 

 constantaxis
z z

r
V V Vθ+ = =

l
, (9.5) 

where zV  is the axial velocity, Vθ  is the tangential velocity and axisVθ  is the axial 

velocity value at the axis. The characteristic length l  is related to the axial pitch 

h  by the relationship 

 2h π= l . (9.6) 

The correspondence between the axial wavenumber and the axial pitch goes 

from relation 
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 ( ) 2k z h kz π+ − =   ⇔   
2

h
k

π
=  (9.7) 

In the same time applying equation (9.6) the axial wavenumber and the 

characteristic length l  are related by the formula 

 
1

k =
l
. (9.8) 

The numerical simulations of the vortex rope model performed by Kuibin at 

al. in [100] resulting in 0.311num =l  having a corresponding axial wavenumber 

3.215numk =  were compared with the numerical results obtained in our study. In 

Figure 9.21 the critical axial wavenumber is plotted as function of mode number. 

The value of the critical wavenumber 3.2crk =  for modes { }0,1,2m =  is the same 

as obtained in the experiment [100]. 

 
Figure 9.21 Critical axial wavenumber as function of mode. The value of the 

critical wavenumber 3.2crk =  for modes { }0,1,2m =  is the same as in the 

experiment [100]. 

 

There is a clear agreement between the result obtained in reference [100] 

with the numerical results obtained by us. 
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The mathematical and numerical tools presented in this thesis can recover 

the main information describing the behavior of the perturbed flow without 

computing the full three-dimensional unsteady flow in the hydraulic turbine. 

 The figures Figure 9.22, Figure 9.23 present the variation of the perturbed 

pressure at a dimensionless time value, at different investigated modes. The grey 

collored plane represents the wall boundary. 

 
Figure 9.22 Variation of perturbed pressure at mode 0m = . 
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Figure 9.23 Variation of perturbed pressure at mode 1m = . 

 
 

9.5 Accuracy and Convergence of the Algorithm 
 

In order to obtain the set of experimental results, we design the stability 

algorithm in two stages. First, the algorithm solves the eigenvalue problem (7.28) 

and finds the critical eigenvalue with largest negative imaginary part, that 

corresponds to the most unstable perturbation. In the second stage, varying the 

frequency omega at different numbers of collocation parameters N , we retain the 

maximum growth rate and the corresponding frequency, denoted as the critical 

frequency. The question here is how to find the optimum value of the spectral 

parameter N  that defines the number of Chebyshev collocation nodes? 

Let us define the eigenvalue problem (7.28) in operator formulation 

 [ ] [ ]( ) ( )u u0,
Tkk L L L F G H Pωω+ + = =   (9.9) 
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where  
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 (9.10) 

Let us denote by 

 ( ) [ ] [ ]( ){ }u, 0k
r ik k k k L L Lω

ω ωΛ = = + + =  (9.11) 

the spectra of the eigenvalue problem (6.1) computed for a given frequency, 

 ( )mingr imagω ω= Λ   (9.12) 

the growth rate of the most unstable perturbation at a given frequency. 

Let us define the set 

 ( ) [ ]{ }0,0.4N grωχ ω ω= − ∈  (9.13) 

and the pair 

 ( ) ( )( ) ( ){ }1
max max max, max ,cr N cr Ngr gr grω χ ω ω χ −= = =  (9.14) 

The set ( )Nχ ω  and the pair (9.14) are computed for each mode number 

investigated { }3, 2, 1,0,1,2,3m = − − −  for an optimum collocation number of nodes 

N . Following Tadmor [89], when the Chebyshev pseudospectral methods are used, 

the error committed is expected to decay to zero at an exponential rate. For this 

reason, we run the algorithm for the values of collocation parameter N  along an 

interval sufficiently large to reach the convergence, between 5 and 60. The output 

crω  that is returned over the optimum value of the collocation parameter min
crN  is 

expected to have the greatest number of occurences. The convergence of the 
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algorithm is depicted in Table 9.8. Occurence of the dominant frequencies are 

presented in Figure 9.24 through Figure 9.30 for each investigated mode. 

 

Table 9.8 Convergence of the algorithm for the investigated mode numbers. 
 

3m = −  2m = −  1m = −  0m =  1m =  2m =  3m =  
N crω  N crω  N crω  N crω  N crω  N crω  N crω  

6 0.4 5 0.15 5 0.25 6 0.15 6 0.1 6 0.1 6 0.05 
8 0.05 7 0.05 6 0.1 8 0.2 8 0.2 8 0.25 8 0.1 
13 0.15 8 0.05 8 0.1 11 0.25 10 0.35 10 0.15 14 0.15 
14 0.4 9 0.35 10 0.25 12 0.3 15 0.25 11 0.2 17 0.25 
18 0.4 10 0.4 12 0.4 19 0.3 20 0.2 14 0.2 23 0.3 
21 0.4 26 0.4 16 0.4 22 0.3 27 0.35 23 0.3 26 0.4 
26 0.4 31 0.4 17 0.4 31 0.3 33 0.3 33 0.4 30 0.4 
30 0.4 32 0.4 19 0.4 37 0.3 36 0.3 35 0.4 32 0.4 
44 0.4 34 0.4 29 0.4 43 0.3 39 0.3 37 0.4 35 0.4 
47 0.4 37 0.4 31 0.4 52 0.3 42 0.3 41 0.4 50 0.4 
59 0.4 43 0.4 37 0.4 55 0.3 55 0.3 53 0.4 53 0.4 
  47 0.4 40 0.4 60 0.3 57 0.3 56 0.4   
  49 0.4 46 0.4 65 0.3 60 0.3     
    61 0.4   64 0.3     

 

 
Figure 9.24  Occurence frequency             Figure 9.25 Occurence frequency 

                 for mode 3m = − .                            for mode 2m = − . 
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Figure 9.26  Occurence frequency             Figure 9.27 Occurence frequency 

               for mode 1m = − .                                    for mode 0m = . 

 

 
Figure 9.28 Occurence frequency           Figure 9.29 Occurence frequency 

                for mode 1m = .                                     for mode 2m = . 

 

 
Figure 9.30 Occurence frequency for mode 3m = . 
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Let us define  

 ( ) [ ] [ ]( )( ) ( )u u

1/22
,

Tk
cre N abs k L L L F G H Pωω

 
= + + = 
 
∑

uuuuur
 (9.15) 

the residual vector of the eigenvalue problem computed for a frequency equal to 

the critical frequency crω  and for a spectral parameter min max,cr crN N N ∈
 

 along 

the optimum interval where the algorithm convergence is achived. Let be 

 ( )( ){ }min maxmax ,N cr crE e N N N N = ∈
 

uuuuur
 (9.16) 

the set of maximum values of the residual along the optimum interval of 

collocation.  

For each mode number we present the set value (9.16) on a logarithmical 

representation in Figure 9.31-Figure 9.37. This proves that the convergence is 

reached for all mode numbers considered here. One may notice that the optimum 

node number varies function of mode number. Using the logarithmic 

representation is possible to observe the fact that, along the optimum interval of 

collocation, the error is not decreasing with the number of nodes as expected, 

having a rather an exponential increase. This leads to the conclusion that there 

exists a spectral parameter N  located into the optimum collocation interval, but 

this is not necessary be the largest value. 
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Figure 9.31 Residual along the              Figure 9.32 Residual along the 

optimum  range for mode 3m = − .             optimum range for mode 2m = − . 
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Figure 9.33 Residual along the              Figure 9.34 Residual along the 

optimum  range for mode 1m = − .             optimum range for mode 0m = . 
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optimum  range for mode 1m = .             optimum range for mode 2m = . 
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Figure 9.37 Residual along the optimum range for mode 3m = . 

 

The convergence behaviour of the collocation algorithm for 1m = −  case is 

reported in Table 9.9 on few cluster configurations. It is noticeable that the time 
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increase is relevant when the numerical experiments are runned on four labs 

configuration instead of the others configuration, as seen in Figure 9.38.  

 
 

Table 9.9 Elapsed time (in seconds) of numerical simulations for mode 1m = − , 

on four cluster configurations. 

N Critical 
frequency 

Elapsed time   
on 2 labs 

Elapsed time   
on 4 labs 

Elapsed time  
on 6 labs 

Elapsed time  
on 12 labs 

5 0.25 1.463658 0.196285 0.211601 0.234809 
6 0.1 1.569234 0.225536 0.193199 0.234809 
8 0.1 1.584621 0.210344 0.222434 0.283018 
10 0.25 1.611874 0.328014 0.341408 0.283018 
12 0.4 1.632951 0.345925 0.360558 0.309034 
16 0.4 1.751369 0.431654 0.431196 0.411551 
17 0.4 1.836951 0.460168 0.451093 0.432002 
19 0.4 1.854693 0.519268 0.524420 0.521150 
29 0.4 2.234852 1.005637 1.015383 0.970903 
32 0.4 2.672955 1.479596 1.448778 1.275429 
37 0.4 2.895647 1.682333 1.726657 1.708823 
40 0.4 3.269854 2.064365 2.087408 2.100683 
46 0.4 4.125965 2.942432 2.948638 3.088599 
61 0.4 8.264985 6.453132 6.318485 11.612987 
83 0.4 12.563211 9.587423 9.146582 15.780547 

 

 

Figure 9.38 Elapsed time for mode 1m = − , on four cluster configurations. 
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The time increase becomes irrelevant when the number of cluster nodes is 

increased at six labs and twelve labs respectively, thus the conclusion that the 

cluster has no need to be extended for numerical improvements of our stability 

analysis.  

 

9.6 Summary and Published Papers Supporting This 

Chapter 

 

In this chapter, a numerical algorithm based on spectral collocation with 

shifted Chebyshev polynomials was developed to investigate the hydrodynamic 

stability of the flow in Francis turbine diffuser cone, in condition of a sophisticated 

boundary relations fulfilled in axis and to the wall boundary. Two research 

directions have been considerred: influence of discharge coefficient on 

hydrodynamic stability and study of absolute and convective instability of the 

swirl system with discrete velocity profiles, experimentally obtained and provided 

from reference [100]. The dominant frequency of the vortex rope and 

correspondent axial wavenumber have been numerically computed by means of the 

algorithm presented in this chapter. There is a clear agreement between the result 

obtained in reference [100] with the numerical results obtained by us. The 

accuracy and convergence of the algorithm was also addressed. 

 The following published papers are based on the work presented in this 

chapter. 

 

In Proceedings of International Conferences (ISI) 

Paper 1. BISTRIAN, D.A., DRAGOMIRESCU, I., SAVII, G., STOICA, D., 

Spectral Differentiation Operators for Solving Hydrodynamic PSE Models, 

ICNAAM 2010, 8th International Conference of Numerical Analysis and Applied 

Mathematics 19-25 September, Rodos, American Institute of Physics Conference 
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Proceedings 1281, September 30, Melville, New York, pp. 448-451, ISBN 978-0-

7354-0831-9, ISSN 0094-243X, 2010. 

 

Paper 2. SUSAN-RESIGA, R., SAVII, G., MAKSAY, ST., BISTRIAN, D.A., 

Numerical Methods Based On Shifted Polynomials In Swirling Flows Stability 

Analysis, Recent Advances in Computers, Proceedings of the 13th WSEAS 

International  Conference on Computers, 23-25 July, Rodos, pp. 481-486, ISBN: 

978-960-474-099-4, ISSN: 1790-5109, 2009. 

 

Paper 3. BISTRIAN, D.A., DRAGOMIRESCU, I., SAVII, G., Spectral 

Differentiation Operators And Hydrodynamic Models For Stability Of Swirling 

Fluid Systems, Mathematics And Computers In Science And Engineering-

Proceedings of the 14-th WSEAS International Conference on Applied 

Mathematics, 14-16 December, Puerto De La Cruz, Canary Islands, pp. 328-333, 

ISBN 978-960-474-138-0, ISSN 1790-2769, 2009. 

 

In International Journals 
 

Paper 4. BISTRIAN, D.A.,  DRAGOMIRESCU, I., SAVII, G., Descriptor 

Techniques for Modeling of Swirling Fluid Structures and Stability Analysis, 

WSEAS Transactions On Mathematics, Issue 1, Volume 9, pp. 56-66, ISSN: 1109-

2769, 2010. 

 

Paper 5. BISTRIAN, D.A., Spectral Techniques For Solving PDE Stability 

Model Of Vortex Rope, WSEAS Transactions On Mathematics, Issue 9, Volume 9, 

pp. 711-722, ISSN: 1109-2769, 2010. 
 

Paper 6. BISTRIAN, D.A., SAVII, G., LATINOVIC, T., MAKSAY, ST., 

Stability Investigation Of Swirling Flows With Spectral Algorithms, IST 

Transactions Of Applied Mathematics-Modeling And Simulation, Vol. 1, No. 1 (2)  

pp. 20-27, ISSN 1913-8342, October 2010  

 

In International Conferences Presentation 

 

Paper 7. BISTRIAN, D.A.,  DRAGOMIRESCU, I., MUNTEAN, S., SUSAN-

RESIGA, R., SAVII, G., Spectral Descriptor Approach For Solving Hydrodynamic 

PDE Models Of Swirling Flows With Applications, SIAM/RSME-SCM-SEMA 

Meeting Emerging Topics in Dynamical Systems and Partial Differential 

Equations DSPDEs'10,  May 31st, – June 4th, Barcelona, Spain, 2010. 
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Chapter 10  

Conclusions 

10.1 Thesis Summary 
 

The subject of this thesis was to study the hydrodynamic stability of the 

swirl flow downstream the Francis turbine runner by means of linear stability 

analysis. The hydrodynamic instability arising under the form of a characteristic 

precession flow, named the vortex rope creates high-pressure unsteady fluctuations 

on the walls of the draft tube, leading to a poor performance of the turbine 

including fatigue damage. Modeling of the hydrodynamic phenomena which lead to 

vortex rope occurrence and the numerical investigation of the hydrodynamic 

instability of this fluid system were tasks that have been assessed in this thesis. 

Many studies cited in literature consider the problem of simulating the flow 

downstream the hydropower runner, but there no exists so far investigations from 

the point of hydrodynamic stability of the swirling flow in hydropower turbine. 

This thesis intended to cover this gap and presents the methodology developed for 

spatial/temporal stability investigation of the swirl flow in Francis diffuser and the 

results obtained.  

As an alternative to classical methods as finite volume and finite element 

methods, the present thesis proposed a new approach of the analysis of the 

swirling flows based on a recently mathematical method of spectral collocation. 

In this thesis, advanced computational algorithms based on spectral 

collocation method have been specifically designed considering each hydrodynamic 

stability analysis request and they have been implemented including the parallel 

and distributed processing on a cluster structure. 
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Selection of the spectral methods as a tool for solving the eigenvalue 

problems governing the flow hydrodynamic stability is motivated by the accuracy 

of these methods and the exponentially decreasing of the error, differently form the 

finite element methods having an algebraic convergence rate. 

A major benefit of collocation based method is given by a fast processing 

time and small hardware requirements. 

In Chapter 1 of this thesis a motivation for the study of hydrodynamic 

stability of the swirling flow in Francis hydropower turbine using computer aided 

techniques and parallel and distributed computation was presented.  

Chapter 2 gives an overview of the linear stability analysis of vortex 

hydrodynamics.  

The mathematical model of the swirling flow downstream the Francis 

turbine runner is developed in Chapter 3. 

Chapter 4 presents mathematical considerations about the spectral methods 

used in forthcoming numerical stability algorithms. Computational approaches for 

stability eigenvalue problems are presented here and a new orthogonal base of 

polynomial test functions is introduced.  

In Chapter 5 we developed a numerical procedure to investigate the spatial 

stability of a swirling flow subject to infinitesimal perturbations using a modal 

boundary adapted collocation technique. The accuracy of the method is assessed 

underlying the necessity for the construction of a certain class of orthogonal 

expansion functions satisfying the Dirichlet boundary conditions. The key issue 

was the choice of the grid and the choice of the modal trial basis. This modal 

scheme based on shifted Chebyshev polynomials allow the numerical 

approximation of the unknown perturbation field to be searched directly in the 

physical space of the problem.  
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Our numerical procedure directly provided relevant information on 

perturbation amplitude for stable or unstable induced modes, the maximum 

amplitude of the most unstable mode and the critical distance where the 

perturbation is the most amplified.     

For boundary conditions other than the ones of Dirichlet type, the method 

is less flexible since the basis functions satisfying the corresponding boundary 

conditions are difficult to construct. In Chapter 6 we presented a numerical 

method based on a modified tau technique that approximates the perturbation 

field in axisymmetrical mode 0m =  and for bending modes 1m = ± , when the 

boundary conditions are sophisticated expressions that increase the 

implementation effort. Using a shifted Chebyshev approach, the major advantage 

of this algorithm is that it allows a good handling of the complicated boundary 

conditions, in order to translate the eigenvalue problem into a linear system. 

Another important aspect that must be pointed out is that the numerical 

approximations of the unknown perturbation fields are reached directly in the 

physical space due to a careful selection of the test polynomial functions.  

A parallel computation method based on spectral descriptor technique for 

analysis of swirling flows hydrodynamic stability with sophisticated boundary 

conditions is presented in Chapter 7. 

This section presents the mathematical and numerical methodology to 

investigate the stability of the fluid system downstream the Francis runner, to 

simulate the frequency, pressure pulsation amplitude and other parameters under  

operating conditions corresponding to all mode numbers.  

The presented approach is different from the traditional optimization 

methods, since the spectral collocation technique that we developed has the 

peculiar feature that can approximate the perturbation field for all types of 
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boundary conditions, especially when the boundary limits are described by 

sophisticated expressions.  

Using descriptor technique [58, 82], widely used in the control theory 

community, combined with the algebraic properties of the Chebyshev orthogonal 

polynomials, the partial differential system governing the stability of the flow was 

translated in hydrodynamic eigenvalue problem in matrix operators formulation. 

The problem of axial singularities was eliminated by inclusion of the boundary 

conditions as equations that complete the system. 

The new spectral algorithms presented in this thesis have been validated in 

Chapter 8 with existing stability investigations concerning the swirling flow system 

with known velocity profiles, namely the Batchelor vortex problem. Comparisons 

with results from literature were illustrated and a comparative review of the 

results obtained in particular case of non axisymmetrical modes using the modal 

boundary adapted collocation technique, the projection Chebyshev-Tau technique 

and the spectral collocation method, developed during this survey have illustrated. 

The collocation method is more accurate, however the projection method is less 

expensive with respect to the numerical implementation costs, i.e. numerical 

results are obtained using a much smaller terms in series expansion.  

Chapter 9 presents the results of parallel and distributed investigation of 

the vortex rope model using Matlab Distributed Computing Server on a Windows 

operating system cluster. The test platform was represented during this survey by 

a cluster based on the Matlab Parallel Processing Toolbox. Using the internal 

cluster manager from Matlab we were able to evaluate the algorithms behavior 

using a distributed process.  

In this chapter, a numerical algorithm based on spectral collocation with 

shifted Chebyshev polynomials was developed to investigate the hydrodynamic 

stability of the flow in Francis turbine diffuser cone, in condition of a sophisticated 



 159 

boundary relations fulfilled in axis and to the wall boundary. Two research 

directions have been considerred: influence of discharge coefficient on 

hydrodynamic stability and study of absolute and convective instability of the 

swirl system with discrete velocity profiles, experimentally obtained and provided 

from researches of Kutateladze Institute of Thermophysics, Novosibirsk, Russia 

[99]. The dominant frequency of the vortex rope and correspondent axial 

wavenumber have been numerically computed by means of the algorithm 

presented in this chapter. There was a clear agreement between the result 

obtained in reference [99] and the numerical results obtained by us.  

The accuracy and convergence of the algorithm was also addressed here and 

an investigation upon the optimum number of collocation nodes was carried. The 

conclusion is that there exists an optimum collocation interval which can be 

determined considering the parameters of the stability analysis and a spectral 

parameter N  located into the optimum collocation interval, but this is not 

necessary be the largest value into this interval. 

The algorithm was tested on few cluster configurations. It was noticeable 

that the time increase becomes irrelevant when the number of cluster nodes is 

increased, thus the conclusion that the cluster has no need to be extended for 

numerical improvements of our stability analysis.  

 

10.2 Contributions 
 

The mathematical model presented in this thesis can correctly recover all 

the information in the prediction of the turbine characteristics without actually 

computing the full three-dimensional unsteady flow in the hydraulic turbine. As a 

result, this thesis provides valuable mathematical tools for assessing the turbine 

behaviour at off-design operating regimes in the early stages of runner design, with 
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computational effort several orders of magnitude less than the current approaches 

of simulating the complex turbine flow. 

The environment for algorithms development and test was Matlab, due to 

the very advanced mathematical embedded functions, allowing the user to focus 

on developing algorithms instead of the details of the implementation. 

The originality of the new spectral algorithms developed in this thesis 

consists in the following features: 

• Rebuilt of the mathematical model governing the swirling flow with 

differential operators; 

• Development of a special orthogonal test functions based on shifted 

Chebyshev polynomials, allowing the numerical approximation of the unknown 

perturbation field to be searched directly in the physical space of the practical 

problem increasing the solution accuracy; 

• Recasting of the unknown eigenvectors in series of orthogonal 

expansions by means of boundary adapted test functions, satisfying the 

boundary conditions, this technique allowing to eliminate the problem of axial 

singularities; 

• Approximation of derivatives of the unknown eigenvectors by means of 

spectral differentiation matrices, particularly derived in different flow problems;  

• Determination of an optimal clustered grid; 

• Optimal implementation of the Dirichlet, Newman and mixed boundary 

conditions; 

• Inclusion of an efficient numerical library as NAG Toolbox for 

MATLAB which provided a good eigensolver solution for our numerical 

computational needs, beaside standard Matlab functions; 

• The algorithms that we developed in this thesis for hydrodynamic 

stability investigation of swirling flows are based on meshless techniques. The 
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collocation technique that we have used in numerical computation has the 

benefit of reducing the computational time compared to finite element based 

algorithms and they reach an exponential convergence; 

• Running the algorithms on a cluster configuration we took the benefits 

of parallel processing capabilities offered by the Matlab environment. However, 

even without modifying the solver we can notice an increase in time 

requirement for solving the problem.  

 

10.3 Future work  
 

While the hydrodynamic stability analysis conducted in this thesis has 

considered an inlet perturbation which depends only on radial variable, the effect 

of different perturbations needs to be examined and a non parallel stability 

analysis should be considered for an accurate simulation. 

As a future study, a nonparallel stability analysis using parabolized  

equations (PSE) will be assessed, in order to increase the accuracy of the stability 

analysis in the conical geometry of the draft tube. A first attempt was made in 

[102]. The nonparallel effects of the basic flow play an important role in the 

development of both axisymmetric and non axisymmetric unstable perturbations 

upstream of the vortex breakdown station and can show the convective nature of 

these instabilities. 

New classes of orthogonal test polynomials would also be considered in 

numerical algorithms development. The numerical procedures for hydrodynamic 

stability analyses will be specifically developed to take advantage of parallel and 

distributed computers memory.  

Computers and numerical techniques will be used to solve real world 

complex problems that do not allow analytical solutions. 
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For the presented study developed in this thesis we can emphasize some  

considerable benefits mentioned hereinafter: 

• Mathematics gives a transferable knowledge in approaching interdisciplinary 

problems that occur in modern science, which can be applied to a number of 

different disciplines sometimes unrelated. 

• Enables to recognize that mathematics development taking in account 

computational advances can be applied to important technological issues 

that need to be solved at state or national level. 

• Enables the any research team to be infused with state of the art tools that 

make the problem to be straightforward.  

  

 
 



 163 

 

Bibliography and References 
 

[1] Jacob, T., Evaluation sur Modèle Réduit et Prédiction de la Stabilité de 

Fonctionnement des Turbines Francis, EPFL Thesis No. 1146, Lausanne, 

Switzerland, 1993. 

[2] Susan-Resiga R., Vu T.C., Muntean S., Ciocan G.D.,and Nennemann B., Jet 

Control of the Draft Tube Vortex Rope in Francis Turbines at Partial 

Discharge, Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery 

and Systems, Yokohama, Japan, Paper 192. 

[3]  Thicke R.H., Practical Solutions for Draft Tube Instability, Water Power and Dam 

Construction, Vol. 33, No. 2, pp. 31-37, 1981. 
[4] McDonald, A.T., Fox, R.W., Van Dewoestine, R.V., Effects of Swirling Inlet Flow on 

Pressure Recovery in Conical Diffusers, AIAA Journal, Vol. 9, No. 10, pp. 2014-2018, 
1971.  

[5]  Susan-Resiga R., Ciocan G.D., Anton I., Avellan F., Analysis of the Swirling 

Flow Downstream a Francis Turbine Runner, Journal of Fluids Engineering, 

Vol. 128 (1), pp. 177-189, 2006. 

[6] Vu, T. C., and Retieb, S., Accuracy Assessment of Current CFD Tools to 

Predict Hydraulic Turbine Efficiency Hill Chart, Proceedings of the 21st IAHR 

Symposium on Hydraulic Machinery and Systems, Lausanne, Switzerland, pp. 

193–198, 2002. 

[7] Ruprecht, A., Maihöfer, M., Heitele, M., and Helmrich, T., Massively Parallel 

Computation of the Flow in Hydo Turbines, Proceedings of the 21st IAHR 

Symposium on Hydraulic Machinery and Systems, Lausanne, Switzerland, pp. 

199–206, 2002. 

[8] Ruprecht, A., Helmrich, T., Aschenbrenner, T., and Scherer, T., Simulation of 

Vortex Rope in a Turbine Draft Tube, Proceedings of the 21st IAHR 

Symposium on Hydraulic Machinery and Systems, Lausanne, Switzerland, pp. 

259–266, 2002. 

[9] Ruprecht, A., Unsteady flow simulation in hydraulic machinery, Task 

Quarterly 6, No. 1, pp. 187-208, 2002. 

[10] Scherer, T., Faigle, P., and Aschenbrenner, T., Experimental Analysis and 

Numerical Calculation of the Rotating Vortex Rope in a Draft Tube Operating 

at Part Load, Proceedings of the 21st IAHR Symposium on Hydraulic 

Machinery and Systems, Lausanne, Switzerland, pp. 267–276, 2002. 

[11] Miyagawa, K., Tsuji, K., Yahara, J., and Nombra, Y., Flow Instability in an 

Elbow Draft Tube for a Francis Pump-Turbine, Proceedings of the 21st IAHR 



 164 

Symposium on Hydraulic Machinery and Systems, Lausanne, Switzerland, pp. 

277–286, 2002. 

[12] Magnoli, M. V., Numerical simulation of pressure oscillations in Francis 

turbine runners, JASS 2009-Joint Advanced Student School, St. Petersburg, 

Numerical Simulation in Turbomachinery. 

[13] Alligne, S., Nicolet, C., Allenbach, P., Kawkabani, B., Simond, J. J., Avellan, 

F., Influence of the vortex rope location of a Francis turbine on the hydraulic 

system stability, IAHR 24th Symposium on Hydraulic Machinery and Systems, 

27-31 October, Foz Do Iguassu, Brazilia. 

[14] Nicolet, C., Zobeiri, A., Maruzewski, P., Avellan, F., On the upper part load 

vortex rope in Francis turbine: experimental investigation, 25th IAHR 

Symposium on Hydraulic Machinery and Systems, IOP Conf. Series: Earth 

and Experimental Science 12, 2010. 

[15] Langer R.E., On the stability of the laminar flow of a viscous fluid, Bull. 

Amer. Math. Soc., 46, pp. 257-263, 1944. 

[16] Hopf E., On nonlinear partial differential equations, Lecture series of the 

Symposium on partial differential equations, University of California, pp.7-11, 

1955.  

[17] Lin C.C., The theory of hydrodynamic stability, Cambridge University Press, 

Cambridge, 1955. 

[18] Rotta J.C., Experimentalier Beitrag zur Entstehung turbulenter Strömung im 

Rohr, Ing. Arch., 24, pp. 258-281, 1956. 

[19] Stuart J.T., Nonlinear Stability Theory, Annual Review of Fluid Mechanics, 2, 

1971. 

[20] Joseph D.D., Global stability of fluid motions, Dept. Aerospace Eng. And 

Mech., Univ. of Minnesota, Minneapolis, 1971. 

[21] Chandrasekhar S., Hydrodynamic and hydromagnetic stability. Dover, 

NewYork, 1981. 

[22] Pozrikidis C., Fluid dynamics, Theory, Computation and Numerical 

Simulation, Kluwer Academic Publishers, Boston, 2001. 

[23] Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A.,  Spectral methods - 

Evolution to complex geometries and applications to fluid dynamics, Springer, 

New York, 2007. 

[24] Trefethen, L.N., Spectral methods in Matlab, SIAM, Philadelphia, 2000. 

[25] Mayer E.W., On the Structure and Stability of Slender Viscous Vortices, PhD 

thesis, University of Michigan, Ann Arbor, MI, 1993. 

[26] Khorrami M. R., On the viscous modes of instability of a trailing line vortex, 

Journal of Fluid Mechanics, 225, pp.197-212, 1991. 

[27] Leibovich S., Stewartson K, A sufficient condition for the instability of 

columnar vortices, Journal of Fluid Mechanics, 126, pp. 335-356, 1983. 



 165 

[28] Orszag, S.A., Accurate solution of the Orr-Sommerfeld stability equation. J. 

Fluid Mech. 50, 689–703, 1971. 

[29] Parras L., Fernandez-Feria R., Spatial stability and the onset of absolute 

instability of Batchelor’s vortex for high swirl numbers, J. Fluid Mech., Vol. 

583, pp. 27– 43, 2007. 

[30] Payne L.E., Straughan B., A naturally efficient numerical technique for porous 

convection stability with non-trivial boundary conditions. Int. J. Numer. Anal. 

Meth. Geomech. 24, 815–836, 2000. 

[31] Reddy S.C., Henningson, D.S., Energy growth in viscous channel flows. J. 

Fluid Mech. 252, 209–238, 1993. 

[32] Alekseenko S.V., Kuibin P.A., Okulov V.L., Theory of concentrated vortices, 

Springer-Verlag Berlin Heidelberg, 2007. 

[33] Drazin P.G., Reid W.H., Hydrodynamic stability. London, New York, Sydney, 

Cambridge University Press, 1981. 

[34] Criminale, W.O., Jackson, T.L., Joslin, R.D., Theory and Computation of 

Hydrodynamic Stability, Cambridge University Press, 2003. 

[35]  Blevins, R. Formulas for natural frequency and mode shape, New York , 

Malabar, FL: Krieger Publishing, 2001., ISBN 1-57524-184-6. 

[36] Tzou, H. S., Bergman, L. A., Dynamics and Control of Distributed Systems, 

Cambridge University Press, ISBN 978-0-521-55074-1, 1998. 

[37] Khorrami M. R., Malik M.R., Ash R.L., Application of spectral collocation 

techniques to the stability of swirling flows, J. Comput. Phys., Vol. 81, pp. 

206–229, 1989. 

[38] Saffman, P.G., Vortex Dynamics, Cambridge University Press, ISBN 0-521-

42058-X, 1992. 

[39] Wu, J.Z., Ma, H.Y., Zhou, M.D., Vorticity and Vortex Dynamics, Springer 

Berlin Heidelberg New York, ISBN-10 3-540-29027-3, 2005. 

[40] Huerre P., Monkewitz P.A., Local and global instabilities in spatially 

developing flows, Annu. Rev. Fluid Mech., Vol. 22, pp. 473-537, 1990. 

[41] Delbende, I., Chomaz, J.M., Huerre, P., Absolute/convective instabilities in 

the Batchelor vortex: a numerical study of the linear impulse response, J. 

Fluid Mech., Vol. 355, pp. 229-254, Cambridge University Press, 1998. 

[42] Olendraru, C., Sellier, A., Rossi,M., Huerre, P., Absolute/convective instability 

of the Bathchelor vortex, Mecanique des fluides/ Fluid Mechanics, C.R. Acad. 

Sci. Paris,t. 323, Serie II b, pp. 153-159, 1996. 

[43] Olendraru C., Sellier A., Rossi M., Huerre P., Inviscid instability of the 

Batchelor vortex: Absolute-convective transition and spatial branches, Physics 

of Fluids, Vol. (11) 7, pp. 1805-1820, 1999. 



 166 

[44] Loiseleux, T., Delbende, I., Huerre, P., Absolute and convective instabilities of 

a swirling jet/wake shear layer, Physics of Fluids, Volume 12, Number 12, pp. 

375-380, 2000. 

[45] Lim, D. W.,  Redekopp, L. G., Absolute instability conditions for variable 

density, swirling jet flows, Eur. J. Mech. B/Fluids 17, 165, 1998. 

[46] Rudman, M., Gathmann, R.J., Lesieur, M., Instability in variable density 

round jets, 11th Australian Fluid Mechanics Conference, University of 

Tasmania, Australia, pp. 411-414, 1992. 

[47] Colella, P., Woodward, P.R., The picewise parabolic method (PPM) for gas-

dynamics simulations, J. Comp. Phys. 54, pp. 174-201. 

[48] Guohui, H., Dejun, S., Xieyuan, Y., Studies on stability and dynamics of a 

swirling jet, Acta Mechanica Sinica, Chinese Journal of Mechanics Press, 

Beijing, China, Vol. 17, No.3, ISSN 0567-7718, pp. 237-244, 2001. 

[49] Anturkar, N.R., Papanastasiou, T.C., Wilkes, J.O., Compound metrix method 

for eigenvalue problems in multiple connected domains, Communications in 

Applied Numerical Methods, Vol. 8, pp. 811-818, 1992. 

[50] Ng, B. S.,  Reid, W. H.,  An initial value method for eigenvalue problems 

using compound matrices, J. Comput. Phys., 30, pp. 125-136, 1979. 

[51] Ng, B. S.,  Reid, W. H., A numerical method for linear two-point boundary-

value problems using compound matrices, J. Comput. Phys., 33, pp. 70-85, 

1979. 

[52]  Yiantsios, S. G., Higgins, B. G., Numerical solution of eigenvalue problems 

using the compoundmatrix method, J. Comput. Phys., 74, pp. 25-40, 1988. 

[53] Khorrami, M. R., A Chebyshev spectral collocation method using a staggered 

grid for the stability of cylindrical flows, International Journal for Numerical 

Methods in Fluids, Volume 12, Issue 9, pp. 825–833, 1991. 

[54] Su, Y. Y., Khomami, B., Numerical Solution of Eigenvalue Problems Using 

Spectral Techniques, Journal of Computational Physics, Volume 100, Issue 2, 

pp. 297-305, 1992.  

[55] Boomkamp, P. A. M., Boersma, B. J., Miesen, R. H. M., Beijnon, G. V., A 

Chebyshev Collocation Method for Solving Two-Phase Flow Stability 

Problems, Journal Of Computational Physics, 132, pp. 191–200, 1997.  

[56] Burgers J.M., A mathematical model illustrating the theory of turbulence, 

Adv. Appl. Mech. 1:171-199, 1948. 

[57] Crowdy D.G., A note on the linear stability of Burgers vortex, Studies in 

Applied Mathematics, 100:107-126, 1998. 

[58] Manning, M.L., Bamieh, B., Carlson, J. M., Descriptor approach for 

eliminating spurious eigenvalues in hydrodynamic equations, 2008, pp.1-13, 

arXiv:0705.1542v2 



 167 

[59] Batchelor G.K, Gill A.E., Analysis of the stability of axisymmetric jets, J. 

Fluid Mech.,Vol.  14, 529 -551, 1962. 

[60] O’Sullivan, P.L.M., Numerical simulation of transitional pipe flow and a 

viscous jet, PhD thesis, Brown University, 1994. 

[61] Bathe, K.I., Wilson, F.L., Numerical Methods in Finite Element Analysis, 

Prentice-Hall, INC, New Jersey, 1976. 

[62] Connor, J.J., Brebbia, C.A., Finite element techniques for fluid flows, News-

Butterworths, Londra, 1976. 

[63] Cook, R.D., Concepts and applications of finite element analysis, John  

Wiley&Sons, New York, 1972. 

[64] Gartling, D.K., Recent developments in the use of finite element methods in 

fluid dynamics, Computing in Applied Mechanics, Nr.18, 1976. 

[65] Lewis, R.I., Vortex element methods for fluid dynamic analysis of engineering 

systems, Cambridge engine technology series, New York, 1991. 

[66] Bajer, K., Moffatt, H.K., Tubes, Sheets and singularities in fluid dynamics, 

Kluwer Academic Publishers, Dordrecht, 2002. 

[67] Finlayson, B.A., The method of weighted residuals and variational principles, 

Academic Press, New York, 1972. 

[68] Bistrian, D.A., Dragomirescu, I., Standard spectral methods in a swirling flow 

stability problem, Proceedings of the 12th Symposium of Mathematics and its 

Applications,  5-7 noiembrie, Timisoara, pp. 294-300, ISBN 1224-6069, 2009. 

[69] Dragomirescu, I., Bistrian, D.A., Muntean, S., Susan-Resiga, R., The Stability 

Of The Swirling Flows With Applications To Hydraulic Turbines, The 3rd 

IAHR International Meeting of the Workgroup on Cavitation and Dynamic 

Problems in Hydraulic Machinery and Systems, Brno, Czech Republic, 

October 14-16, pp.15-24, 978-80-214-3947-4, 2009. 

[70] Bistrian, D., Savii, G., Non Axysimmetrical Stability Study of Swirling Flows 

Using a Projection Algorithm, Latest Trends on Computers (Volume I), 

Proceedings of the 14-th WSEAS International Conference on Computers, 

Corfu Island, 23-25 iulie Grecia,  pp.103-108, ISSN: 1792-4251, ISBN: 978-960-

474-201-1,  

[71] Melenk, J.M., Kirchner, N.P., Schwab, Ch., Spectral Galerkin discretization 

for hydrodynamic stability problems, Computing 65, pp. 97–118, 2000. 

[72] Bistrian, D.A., Dragomirescu, I., Muntean, S., Topor, M., Numerical Methods 

for Convective Hydrodynamic Stability of Swirling Flows, Recent Advances in 

Systems, Proceedings of the 13th WSEAS International  Conference on 

Systems, Rodos, 22-24 iulie Grecia, pp. 283-288, 978-960-474-097-0, 2009. 

[73] Bistrian, D., Dragomirescu, I., Savii, G., Spectral Differentiation Operators 

And Hydrodynamic Models For Stability Of Swirling Fluid Systems, 

Mathematics And Computers In Science And Engineering-Proceedings of the 



 168 

14-th WSEAS International Conference on Applied Mathematics, Puerto De 

La Cruz, Canary Islands, 14-16 decembrie Spania, pp. 328-333, 978-960-474-

138-0, 2009. 

[74] Mason, J.C., Handscomb, D.C., Chebyshev polynomials, Chapman and Hall, 

New York, NY, CRC, Boca Raton, 2002. 

[75] Benjamin, T.J., Theory of the vortex breakdown phenomenon, J. Fluid Mech., 

14, pp. 593-629, 1962. 

[76] Donaldson, C.P., Sullivan, R.D., Behavior of solution of the Navier-Stokes 

equations for a complete class of three-dimensional viscous vortices, In Proc. 

of the heat transfer fluid mechanics conf., Standford, 1960. 

[77] Gardner D.R., Trogdon S.A., Douglas R.W., A modified tau spectral method 

that eliminates spurious eigenvalues. J. Comput. Phys. 80, pp. 137–167, 1989. 

[78] Gheorghiu, C. I., Dragomirescu, I. F., Spectral methods in linear stability. 

Applications to thermal convection with variable gravity field, Applied 

Numerical Mathematics, 59 (2009), 1290-1302. 

[79] Bourne D., Hydrodynamic stability, the Chebyshev tau method and spurious 

eigenvalues. Continuum Mech. Thermodyn.,Vol. 15, Springer-Verlag, pp. 571-

579, 2003. 

[80] Dongara J, Straughan B., Walker D.W., Chebyshev tau - QZ algorithm, 

methods for calculating spectra of hydrodynamic stability problems, University 

of Tennessee Computer Science Technical Report, UT-CS-95-294, June 1995. 

[81] Hesthaven J., Gottlieb S., Gottlieb D., Spectral methods for time dependent 

problems, Cambridge University Press. 

[82] Bistrian, D.A.,  Dragomirescu, I., Savii, G., Descriptor Techniques for 

Modeling of Swirling Fluid Structures and Stability Analysis, WSEAS 

Transactions On Mathematics, Issue 1, Volume 9, pp. 56-66, ISSN: 1109-2769, 

2010. 

[83] Lessen, M., Paillet, F., 1974, The stability of a trailing line vortex. Part 2. 

Viscous theory, Journal of Fluid Mechanics, Vol. 65, pp. 769-779. 

[84] Diurno, W.G., Higher Order Solution of the Compressible Viscous Flows 

Arising in Aerothermodynamics Using a Finite Element Method, Proc, 

AIDAA Congress,  Roma (Italy), 11-15 September 1995. 

[85] Peckham, D.H., Atkinson, S.A., Preliminary results of low speed wind tunnel 

tests on a gothic wing of aspect ratio 1.0, Aero. British Res. Council, 1957, CP 

508, pp. 16-17. 

[86] Sarpkaya, T., 1971, On stationary and travelling vortex breakdown, J. of 

Fluid Mech., Vol.45, pp.545-559. 

[87] Escudier, M., 1984, Observations of the flow produced in a cylindrical 

container by a rotating end wall, Experiments in Fluids, Vol.2, pp.189-196. 



 169 

[88] Olendraru C., Sellier A., Absolute–convective instabilities of the Batchelor 

vortex in the viscous case, J. Fluid Mech., Vol. 459, pp. 371–396, 2002. 

[89] Tadmor, E., The exponential accuracy of Fourier and Chebyshev differencing 

methods, Siam Journal on Numerical Analysis, Vol.23, No.1, 1-10, 1986.  

[90] Bistrian, D.A., Dragomirescu, I., Spectral boundary adapted model for swirling 

flow stability control, Journal of Engineering, Annals of Faculty of 

Engineering Hunedoara, Tome VIII,  Fascicule 3, pp. 158-163, ISSN 1584 – 

2673, 2010. 

[91] McFadden, G.B., Murray, B.T., Boisvert, R.F., Elimination of spurious 

eigenvalues in the Chebyshev tau spectral method. J. Comput. Phys.  91, 228--

239 , 1990. 

[92] Venkatakrishnan, V., Simon, H.D., Barth, T., A MIMD implementation of a 

parallel Euler solver for unstructured grids, The J. of Supercomputing 6, pp. 

117-137, 1992. 

[93] Lanteri, S., Parallel solutions of Three-Dimensional compressible flows, 

INRIA, Rapport de recherche n. 2594, June 1995. 

[94] Barth, T.J., Aspects of Unstructured Grids and Finite-Volume Solvers for the 

Euler and Navier Stokes Equations, VKI - AGARD R 787, 1992. 

[95] Peraire, J., Peiro, J., Morgan, K.,  Multigrid Solution of the 3-D Compressible 

Euler Equations on Unstructured Tetrahedral grids, Int. J. Num. Meth. in 

Engin. 36, 1993. 

[96] Bucchignani, E., Diurno, W.G., Parallel computation of inviscid 3D flows with 

unstructured domain partitioning: performances on SGI-Power Challenge 

Supercomputer, Parallel Computing: Fundamentals, Applications and New 

Directions, Elsevier Science B.V.,  1998. 

[97] www.mathworks.com 

[98] www.nag.co.uk/numeric/MB/start.asp 

[99] Kuibin, P.A., Shtork, S.I., Fernandes, E.C., Vortex Structure and Pressure 

Pulsations in a Swirling Jet Flow, Proceedings of the 5th IASME/WSEAS 

International Conference on Fluid Mechanics and Aerodynamics, Athens, 

Greece, August 25-27, pp.9-13, 2007. 

[100] Kuibin, P.A., Okulov, V.L., Susan-Resiga, R.F., and Muntean, S., 

Validation of the mathematical models for predicting the swirling flow and the 

vortex rope in a Francis turbine operated at partial discharge, 25th IAHR 

Symposium on Hydraulic Machinery and Systems, September 20-24, 

Timisoara, Romania, IOP Conf. Series: Earth and Environmental Science 12 

(2010) 012051, pp. 1-10, doi:10.1088/1755-1315/12/1/012051, 2010. 

[101] Ciocan, G.D., Iliescu, M.S., Vu, T.C., Nennemann, B., Avellan, F., 

Experimental Study and Numerical Simulation of the FLINDT Draft Tube 

Rotating Vortex, J.  Fluids Engineering, Vol. 129, pp.146-158, 2007. 



 170 

[102] Bistrian, D.A., Dragomirescu, I., Savii, G., Stoica, D., Spectral 

Differentiation Operators for Solving Hydrodynamic PSE Models, ICNAAM 

2010, 8th International Conference of Numerical Analysis and Applied 

Mathematics 19-25 September, Rodos, American Institute of Physics 

Conference Proceedings 1281, September 30, Melville, New York, pp. 448-451, 

ISBN 978-0-7354-0831-9, ISSN 0094-243X, 2010. 

 



 171 

APPENDIX 

Published Papers 

During the scientific work, a number of publications and public 

presentations have been made which are based on the work presented in this 

thesis. They are listed here for reference. 

A. CărŃi si capitole în cărŃi  

Nr. 
crt. 

Autor(i) Titlu 

Tipul cartii 
(monografie, 

tratat, manual pt 
studenti, etc) 

Editura,  
anul apariŃiei 

Nr. 
pag. 

ISBN 

Clasificare 
CNCSIS a 

editurii  
 

A1 
Maksay Stefan, 
Bistrian  Diana-

Alina 

Ghid Practic În 
Mathcad 

Manual Pentru 
Studenti 

Editura “Sigma 
Plus” Deva,  

2001 
110 

973-
9486-25-

8 

Neclasificat
a 

A2 
Maksay Stefan, 
Bistrian  Diana-

Alina 

EcuaŃii 
DiferenŃiale-
Culegere De 

Probleme 

Culegere De 
Probleme Pentru 

Studenti 
 

Editura Cermi 
Iaşi, 2008 

 
165 

978-973-
667-311-

5 

Cod Cncsis  
181 

A3 
Maksay Stefan, 
Bistrian  Diana-

Alina 

Introducere În 
Metoda 

Elementelor Finite 
Monografie 

Editura Cermi 
Iaşi, 2008 

 
183 

978-973-
667-324-

5 

Cod Cncsis  
181 

A4 
Bistrian, D.A.., 

Stoica, D.,  
Maksay, St 

Matematici 
Asistate De 
Calculator-
AplicaŃii 

Manual Pentru 
Studenti 

Editura 
Politehnica 

Timişoara, Iunie 
2009 

161 
978-973-
625-917-

3 

Cod Cncsis 
186 

A5 

 
Stoica D., Bistrian 
D.A., Maksay St. 

 
Matematici 

Asistate-Calcul 
Simbolic 

 
Manual Pentru 

Studenti 

Editura 
Politehnica 

Timişoara, Iunie 
2010 

 
172 

978-606-
554-076-

7 

Cod Cncsis 
186 

 

B. Lucrări indexate ISI/BDI  

Nr. 
crt. 

An, 
luna 

Autor(i) Titlu lucrare 
Volumul ISI Proceedings in care a 

fost publicata lucrarea 
Pag., nr. 
pagini 

ISBN 

B1 
2009, 
iulie 

Bistrian, D.A., 
Dragomirescu, 

I., Muntean, 
S., Topor, M 

Numerical Methods 
For Convective 
Hydrodynamic 

Stability Of Swirling 
Flows 

Recent Advances In Systems, 
Proceedings Of The 13th Wseas 
International  Conference On 

Systems, Rodos, Grecia, Indexata 
ISI 

pp. 283-
288,  

6 pag. 
 

978-960-
474-097-

0 

B2 
2009, 
iulie 

Susan-Resiga, 
R., Savii, G., 
Maksay, St., 

Bistrian, D.A. 
 

Numerical Methods 
Based On Shifted 
Polynomials In 
Swirling Flows 

Stability Analysis 

Recent Advances In Computers-
Proceedings Of The 13-Th Wseas 

International Conference On 
Computers, Rodos, Grecia, 

Indexata ISI 

pp.481-
486,  

6 pag. 
 

978-960-
474-097-

0 
 

B3 
2009, 

decembrie 

Bistrian, D.A., 
Dragomirescu, 

I., Savii, G. 
 

Spectral 
Differentiation 
Operators And 
Hydrodynamic 

Models For Stability 
Of Swirling Fluid 

Systems 
 

Recent Advances In Applied 
Mathematics-Proceedings Of The 

14-Th Wseas International 
Conference On Applied 

Mathematics,Puerto De La Cruz, 
Canary Islands, Spania, Indexata 

ISI 

pp. 328-
333,  

6 pag. 
 

978-960-
474-138-

0 
 

B4 
2009, 

noiembrie 
Bistrian D.A., 
Dragomirescu 

Standard Spectral 
Methods In A 

The 12th Symposium Of 
Mathematics And Its Applications 

pp. 294-
300,  

1224-
6069 



 172 

I., Swirling Flow 
Stability Problem 

5-7 Noiembrie 2009, Timisoara, 
Indexata 

Zentralblatt, Mathematical Review 

6 pag. 

B5 

 
2010, 
23-25 
iulie 

Bistrian 
Diana, Savii 

George 
 

Non Axysimmetrical 
Stability Study Of 

Swirling Flows 
Using A Projection 

Algorithm 

Latest Trends On Computers 
(Volume I), Proceedings Of The 

14-Th Wseas International 
Conference On Computers, Corfu 

Island, Grecia, Indexata ISI 

 
pp.103-

108, 
6 pag. 

978-960-
474-201-

1 

B6 

 
2010, 
19-25 

septembri
e 

 
Bistrian 
Diana, 

Dragomirescu 
Ioana, Savii 

George, 
Stoica Diana 

 
Spectral 

Differentiation 
Operators For Solving 

Hydrodynamic Pse 
Models 

ICNAAM 2010, 8th International 
Conference Of Numerical Analysis 

And Applied Mathematics, 
American Institute Of Physics  
Conference Proceedings 1281, 

September 30,Melville, New York 
2010 

Indexata ISI 

 
pp.448-
451 

4 pag. 

 
978-0-
7354-

0831-9 
 

B7 

 
2010, 
19-25 

septembri
e 

 
Megan  

Mihail, Stoica 
Diana, 

Bistrian Diana 

 
Nonuniform 
Instability Of 

Stochastic 
Differential Equations 

ICNAAM 2010, 8th International 
Conference Of Numerical Analysis 

And Applied Mathematics, 
American Institute Of Physics  
Conference Proceedings 1281, 

September 30,Melville, New York 
2010 

Indexata ISI 

 
pp. 428-
431,  
4 pag. 

 
978-0-
7354-

0831-9 
 
 

 

C. Lucrări publicate în jurnale internationale  

Nr. 
crt. 

An, 
luna 

Autor(i) Titlu articol 
Revista in care a 

fost publicat 
articolul 

Nr. vol., pag., 
nr. pagini 

ISSN 

C1 

 
2010, 
ianuarie 

 
Bistrian, D.A., 
Dragomirescu, I., 
Savii, G. 
 

Descriptor 
Techniques for 
Modeling of 
Swirling Fluid 
Structures and 
Stability Analysis 

 
Wseas Transactions 
On Mathematics 

 
Issue 1, 
Volume 9,  
pp. 56-66 

 
ISSN: 1109-
2769 

C2 

 
2010, 
septembrie 

 
Bistrian, D.A 

Spectral 
Techniques For 
Solving PDE 
Stability Model Of 
Vortex Rope 

 
Wseas Transactions 
On Mathematics 

 
Issue 9, 
Volume 9,   
pp. 711-722 

 
ISSN: 1109-
2769 

C3 

 
2010, 
octombrie 

 
Bistrian Diana 
Alina, Savii 
George, Latinović 
Tihomir ,  Maksay 
Stefan  
 

 
Stability 
Investigation Of 
Swirling Flows 
With Spectral 
Algorithms 
 

IST Transactions Of 
Applied 
Mathematics-
Modeling And 
Simulation, Canada  

 

 
Vol. 1, No. 1 
(2)  
pp. 20-27,  

 
ISSN 1913-
8342 

 

D. Lucrări publicate în jurnale nationale indexate 

Nr. 
crt. 

An, 
luna 

Autor(i) Titlu articol 

Revista in 
care a fost 
publicat 
articolul 

Nr. vol., 
pag., nr. 
pagini 

ISSN 
Clasificare 
CNCSIS  



 173 

D1 
2001, 

octombrie 

Bistrian 
Diana 

 

Mathematical 
Considerations On 

Stability And 
Instability Of A 
Linear Oscillator 

With Variable 
Parameters 

Annals Of The 
Faculty Of 

Engineering 
Hunedoara 

Tomul 
III 

Fasc. 
5,6,7, 

pag. 65-
68,  

4 pag. 

1454 - 
6531 

B+din 2009 

D2 
2001, 

octombrie 

Bistrian 
Diana 

 

Special 
Techniques For 
Eigenvalues Of 

Symmetrical 
Matrices 

Annals Of The 
Faculty Of 

Engineering 
Hunedoara 

Tomul 
III 

Fasc. 
5,6,7, 

pag. 69-
72,  

4 pag. 

1454 - 
6531 

 B+din 2009 

D3 
2006, 

octombrie 

Bistrian 
Diana 

 

Lyapunov 
Stability Concepts 

In Movement 
Phenomenon 

Study 

Annals Of The 
Faculty Of 

Engineering 
Hunedoara 

Tome 
IV, Fasc. 
2, pag. 

117-120. 

1584 – 
2665 

B+din 2009 

D4 
2006, 

septembrie 

Bistrian 
Diana 

 

Differential 
Equations In 

Single Species 
Models 

 

Annals Of The 
Faculty Of 

Engineering 
Hunedoara 

Tome 
IV, Fasc. 
2, pag. 
51-54. 

1584 – 
2665 

B+din 2009 

D5 
2007, 

septembrie 

Bistrian 
Diana 

 

Upon The Stability 
Of A Linear 

Vector Differential 
Equation Of First 

Order 

Journal Of 
Engineering, 
Annals Of 
Faculty Of 

Engineering 
Hunedoara 

Tome V, 
Fasc. 3, 
pag. 22-

25. 

1584 – 
2673 

B,B+din 2009 

D6 
2007, 

septembrie 

Bistrian 
Diana 

 

Two 
Computational 
Methods Using 
The Chebyshev 
Approximation 

 

Journal Of 
Engineering, 
Annals Of 
Faculty Of 

Engineering 
Hunedoara 

Tome V, 
Fasc. 3, 
pag. 26-

31. 

1584 – 
2673 

B,B+din 2009 

D7 
2007, 

septembrie 

Bistrian 
Diana, 

Maksay 
Stefan 

 

Considerations 
Upon Applying 

Series Expansion 
To The Von Mises 

2-Dimensional 
Distribution 

Journal Of 
Engineering, 
Annals Of 
Faculty Of 

Engineering 
Hunedoara 

Tome V, 
Fasc. 3, 

pag. 181-
186. 

 

1584 – 
2673 

B,B+din 2009 

D8 
2008, 

septembrie 

Maksay 
Stefan, 
Bistrian  
Diana-
Alina 

An Algorithm For 
Truncated 4-
Dimensional 

Modelling Using 
Matlab Computer 
Algebra System 

Journal Of 
Engineering, 
Annals Of 
Faculty Of 

Engineering 
Hunedoara 

Tome 
VI, Fasc. 
3, pag. 9-

14 

1584 – 
2673 

B,B+din 2009 

D9 
2008, 

septembrie 

Maksay 
Stefan, 
Bistrian  
Diana-
Alina 

Cauchy Model 
Using Two-
Dimensional 
Quadrangular 

Truncated 
Distribution 

Journal Of 
Engineering, 
Annals Of 
Faculty Of 

Engineering 
Hunedoara 

Tome 
VI, Fasc. 
3, pag. 
79-82 

1584 – 
2673 

B,B+din 2009 

D10 
2008, 

septembrie 

Bistrian  
Diana-
Alina, 

Maksay  

Finite Element 
Algorithm For 

Velocity Profile 
Af A Laminar 

Journal Of 
Engineering, 
Annals Of 
Faculty Of 

Tome 
VI, Fasc. 
3,  pag. 
73-78 

1584 – 
2673 

B,B+din 2009 



 174 

Stefan Bounded Flow Engineering 
Hunedoara 

D11 

 
2008, 

septembrie 

Bistrian  
Diana-
Alina, 

Maksay  
Stefan 

 

Reduced model for 
temporal stability 

of a Q-Vortex 
 

Journal of 
Engineering, 

Annals of 
Faculty of 

Engineering 
Hunedoara 

Tome 
VI, Fasc. 
3, pag. 
307-311 

 
1584 – 
2673 

B,B+din 2009 

D12 

 
2010, 
iunie 

Bistrian 
Diana 

Numerical 
Algorithms For 

Spatio-Temporal 
Stability Of 

Viscous Swirling 
Flows 

Annals Of 
Faculty 

Engineering 
Hunedoara , 
Journal Of 

Engineering 
 

Tome 
VIII,  
Fascicule 
3, 
pp. 133-
138 

 
1584 – 
2673 

B,B+din 2009 

D13 

 
2010, 
iunie 

 
Bistrian 
Diana, 

Dragomir
escu Ioana 

Spectral Boundary 
Adapted Model 

For Swirling Flow 
Stability Control 

Annals Of 
Faculty 

Engineering 
Hunedoara , 
Journal Of 

Engineering 
 

Tome 
VIII,  
Fascicule 
3, 
pp. 158-
163 

 
1584 – 
2673 

B,B+din 2009 

 

E. Lucrări publicate in volume de conferinŃe internationale 

Nr. 
crt. 

An, 
luna 

Autor(i) Titlu lucrare 
Conferinta internationala 
(nume, loc, perioada de 

desfasurare,vol.) 

Pag., 
nr. 

pagini 
ISBN 

E1 
2008, 

octombrie 

Bistrian  
Diana-
Alina, 

Maksay  
Stefan 

 

Approximate method 
for numerichal 
investigation of 

temporal stability of 
swirling flows 

Proceedings of International 
multidisciplinary symposium 
“Universitaria SIMPRO 2008”, 
Petroşani, 16-17 octombrie 
2008, Proceedings Conferinta 

pag.11
-15, 5 
pag 

1842-
4449 

E2 
2008, 

octombrie 

Maksay 
Stefan, 
Bistrian  
Diana-
Alina 

The normal three-
dimensional 
distribution 

parallelepipedically 
truncated 

Proceedings of International 
multidisciplinary symposium 
“Universitaria SIMPRO 2008”, 
Petroşani, 16-17 octombrie 
2008, Proceedings Conferinta 

pag.5-
10, 6 
pag. 

1842-
4449 

E3 
2008, 

noiembrie 

 
Bistrian  
Diana-
Alina, 

Maksay  
Stefan 

Numerical spectral 
study for viscous 

temporal stability of 
a trailing vortex 

Knowledge Based Organisation 
2008, The 14th International 
Conference, Land Forces 
Academy, Sibiu, 27- noiembrie 
2008, Proceedings Conferinta 

pag. 
241-

248, 8 
pag. 

1843-
6722 

E4 
2008, 

noiembrie 

Diana-
Alina, 

Maksay  
Stefan 

 

Approximate 
modelling of degree 
4 of sliding second 
order phenomena 

 

Knowledge Based Organisation 
2008, The 14th International 
Conference, Land Forces 
Academy, Sibiu, 27- noiembrie 
2008, Proceedings Conferinta 

pag. 
255-

262, 8 
pag. 

1843-
6722 

E5 
2009, 
aprilie 

Bistrian 
D.A., 

Dragomires
cu I.F. 

 

Boundary adapted 
spectral 

approximation for 
spatial stability of 
Batchelor vortex 

International Symposium 
Interdisciplinary Regional 
Research ISIRR 2009, 
Romania-Hungary-Serbia, 
Hunedoara, 23-24 April, 2009, 
Acta Technica Corviniensis – 
Bulletin of Engineering, 
Fascicula 1, 2009, Tom II 

pp.43-
48, 6 
pag. 

 

2067-
3809 

 



 175 

E6 
2009, 
aprilie 

Deaconu 
Sorin, 
Topor 

Marcel, 
Popa 

Gabriel, 
Bistrian 
Diana 

Application of the 
squirrel cage 
asynchronous 

machine working as 
single phase 
generator in 

microhydro power 
plants 

International Symposium 
Interdisciplinary Regional 
Research ISIRR 2009, 
Romania-Hungary-Serbia, 
Hunedoara, 23-24 April, 2009, 
Annals Of Faculty Engineering 
Hunedoara , Journal Of 
Engineering 
Tome VII,  Fascicule 3 

pp.324
-331, 
8 pag. 

1584-
2673 

E7 
2009, 
august 

 

 
Dragomires

cu, I., 
Bistrian, 

D.A., 
Muntean, 
S., Susan-
Resiga, R. 

 

On A Polynomials 
Based Tau Method In 

A Swirling Flow 
Downstream A 
Francis Turbine 

Runner 
 

XVI International Congress on 
Mathematical Physics, August, 
3-8, Prague, Czech Republic, 
Clarion Congress Hotel Prague, 
2009 

Poster 
presen
tation 

 

E8 
2009, 

octombrie 
 

 
Dragomires

cu I., 
Bistrian 
D.A., 

Muntean, 
S., Susan-
Resiga, R. 

The Stability Of The 
Swirling Flows With 

Applications To 
Hydraulic Turbines 

 

The 3rd IAHR International 
Meeting of the Workgroup on 
Cavitation and Dynamic 
Problems in Hydraulic 
Machinery and Systems, Brno, 
Czech Republic, October 14-
16, 2009, Proceedings 
Conferinta 

pp.15-
24, 10 
pag. 

 

978-
80-

214-
3947-

4 
 

E9 

 
2010, 
4-5 

noiembrie 

Bistrian 
Diana, 
Osaci 

Mihaela, 
Topor 
Marcel 

Solutions To 
Accelerate Matlab 

Programs 
With GPU 
Computing 

 
International Symposium on 
Advanced Engineering & 
Applied Management, 40th 
Anniversary in Higher 
Education (1970-2010) 

 
pp. 
II59-
II64 
6 pag. 

 978-
973-0-
09340
-7 

E10 

 
2010, 
4-5 

noiembrie 

 
Bistrian 
Diana, 
Osaci 

Mihaela, 
Topor 
Marcel 

Numerical 
Investigation Of 
Swirling Flows 
Stability Using 

Matlab Distributed 
Computing Server 

On A Windows 
Operating System 

Environment 

 
 
International Symposium on 
Advanced Engineering & 
Applied Management, 40th 
Anniversary in Higher 
Education (1970-2010) 

 
pp. 
II71-
II78 
6 pag. 

 978-
973-0-
09340
-7 

 
F. Workshopuri 

1. Bistrian, D.A., Mathematical Models and Numerical Investigation of Swirling Flows 
Stability, IBM High Performance Scientific Computing Workshop, June 14-18 2010, 
University Politehnica of Bucharest, Romania. 

G. Burse 

1. Bursa pentru mobilitate academica CEEPUS CII-R3-0304-03-1011, Universitatea din 
Banja Luka, Bosnia si Hertegovina, 01.10.2010-31.10.2010. 
 
2. Bursa pentru mobilitate academica CEEPUS CII-R5-0304-01-0910, Universitatea din 
Banja Luka, Bosnia si Hertegovina, 01.11.2009-30.11.2009. 
 
3. Bursa acordata de International Center for Numerical Methods in Engineering (CIMNE) 
pentru participarea la SIAM/RSME-SCM-SEMA Meeting Emerging Topics in Dynamical 
Systems and Partial Differential Equations DSPDEs'10, 31 mai– 4 iunie, Barcelona, Spania, 
2010. 



 176 

 


